يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Luis Valledor"', وقت الاستعلام: 1.64s تنقيح النتائج
  1. 1

    المصدر: Scopus
    RUO. Repositorio Institucional de la Universidad de Oviedo
    Universidad de las Islas Baleares

    الوصف: The recovery and maintenance of plant homeostasis under stressful environments are complex processes involving organelle crosstalk for a coordinated cellular response. Here, we revealed through nuclear and chloroplast subcellular proteomics, biochemical cell profiles and targeted transcriptomics how chloroplasts and nuclei developed their responses under increased temperatures in a long-lived species (Pinus radiata). Parallel to photosynthetic impairment and ROS production in the chloroplast, a DNA damage response was triggered in the nucleus followed by an altered chromatin conformation. In addition, in the nuclei, we found several proteins, such as HEMERA or WHIRLY, which change their locations from the chloroplasts to the nuclei carrying the stress message. Additionally, our data showed a deep rearrangement of RNA metabolism in both organelles, revealing microRNAs and AGO1 as potential regulators of the acclimation mechanisms. Altogether, our study highlights the synchronisation among the different stages required for thermotolerance acquisition in P. radiata, pointing out the role of chromatin conformation and post-transcriptional gene regulation in overcoming heat stress and assuring plant survival for the following years. This article is protected by copyright. All rights reserved.

  2. 2

    المصدر: Plant, cellenvironmentREFERENCES. 44(6)

    الوصف: The elucidation of plant health status requires quantifying multiple molecular metabolism markers. Until now, the extraction of these biomarkers is performed independently, with different extractions and protocols. This approach is inefficient, since it increases laboratory time, amount of sample, and could introduce biases or difficulties when comparing data. To limit these drawbacks, we introduce a versatile protocol for quantifying seven of the most commonly analysed biomarkers (photosynthetic pigments, free amino acids, soluble sugars, starch, phenolic compounds, flavonoids and malondialdehyde) covering substantial parts of plant metabolism, requiring only a minimum sample amount and common laboratory instrumentation. The procedures of this protocol rely on classic methods that have been updated to allow their sequential use, increasing reproducibility, sensibility and easiness to obtain quantitative results. Our method has been tested and validated over an extended diversity of organisms (Arabidopsis thaliana, Solanum lycopersicum, Olea europaea, Quercus ilex, Pinus pinaster and Chlamydomonas reinhardtii), tissues (leaves, roots and seeds) and stresses (cold, drought, heat, ultraviolet B and nutrient deficiency). Its application will allow increasing the number of parameters that can be monitored at once while decreasing sample handling and consequently, increasing the capacity of the laboratory.