يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Bora Nam"', وقت الاستعلام: 0.74s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: PLoS ONE, Vol 15, Iss 4, p e0231268 (2020)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Despite increasing research on the gut-skin axis, there is a lack of comprehensive studies on the improvement of skin health through the regulation of the intestinal condition in humans. In this study, we investigated the benefits of Lactobacillus plantarum HY7714 (HY7714) consumption on skin health through its modulatory effects on the intestine and ensuing immune responses. HY7714 consumption led to differences in bacterial abundances from phylum to genus level, including increases in Actinobacteria followed by Bifidobacterium and a decrease in Proteobacteria. Additionally, HY7714 significantly ameliorated inflammation by reducing matrix metallopeptidases (MMP-2 and MMP-9), zonulin, and calprotectin in plasma, all of which are related to skin and intestinal permeability. Furthermore, RNA-seq analysis revealed its efficacy at restoring the integrity of the gut barrier by regulating gene expression associated with the extracellular matrix and immunity. This was evident by the upregulation of IGFBP5, SERPINE1, EFEMP1, COL6A3, and SEMA3B and downregulation of MT2A, MT1E, MT1X, MT1G, and MT1F between TNF- α and TNF- α plus HY7714 treated Caco-2 cells. These results propose the potential mechanistic role of HY7714 on skin health by the regulation of the gut condition.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: PLoS ONE, Vol 12, Iss 4, p e0175808 (2017)

    مصطلحات موضوعية: Medicine, Science

    الوصف: The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

    وصف الملف: electronic resource

  3. 3

    المصدر: PLoS ONE, Vol 15, Iss 4, p e0231268 (2020)
    PLoS ONE

    الوصف: Despite increasing research on the gut-skin axis, there is a lack of comprehensive studies on the improvement of skin health through the regulation of the intestinal condition in humans. In this study, we investigated the benefits of Lactobacillus plantarum HY7714 (HY7714) consumption on skin health through its modulatory effects on the intestine and ensuing immune responses. HY7714 consumption led to differences in bacterial abundances from phylum to genus level, including increases in Actinobacteria followed by Bifidobacterium and a decrease in Proteobacteria. Additionally, HY7714 significantly ameliorated inflammation by reducing matrix metallopeptidases (MMP-2 and MMP-9), zonulin, and calprotectin in plasma, all of which are related to skin and intestinal permeability. Furthermore, RNA-seq analysis revealed its efficacy at restoring the integrity of the gut barrier by regulating gene expression associated with the extracellular matrix and immunity. This was evident by the upregulation of IGFBP5, SERPINE1, EFEMP1, COL6A3, and SEMA3B and downregulation of MT2A, MT1E, MT1X, MT1G, and MT1F between TNF- α and TNF- α plus HY7714 treated Caco-2 cells. These results propose the potential mechanistic role of HY7714 on skin health by the regulation of the gut condition.