يعرض 1 - 10 نتائج من 2,682 نتيجة بحث عن '"poultry"', وقت الاستعلام: 1.41s تنقيح النتائج
  1. 1

    المصدر: Journal of Food Protection. 85:1479-1487

    الوصف: Salmonella is the leading cause of bacterial foodborne zoonoses in humans. Thus, the development of strategies to control bacterial pathogens in poultry is essential. Peanut skins, a considerable waste by-product of the peanut industry is discarded and of little economic value. However, peanut skins contain identified polyphenolic compounds that have antimicrobial properties. Hence, we aim to investigate the use of peanut skins as an antibacterial feed additive in the diets of broilers to prevent the proliferation of Salmonella Enteritidis (SE). One hundred sixty male hatchlings (Ross 308) were randomly assigned to (i) peanut skin diet without SE inoculation (PS); (ii) peanut skin diet and SE inoculation (PSSE); (iii) control diet without SE inoculation (CON); and (iv) control diet with SE inoculation (CONSE). Feed intake and body weights were determined at weeks 0 and 5. On days 10 and 24 posthatch, three birds per pen (24 total) from each treatment group were euthanized, and the liver, spleen, small intestine, and ceca were collected. The weights of the liver, spleen, and ceca were recorded. Organ invasion was determined by counting SE colonies. Each pen served as an experimental unit and was analyzed by using a t test. Performance data were analyzed in a completely randomized design by using a general linear mixed model to evaluate differences. There were no significant differences (P0.05) in weekly average pen body weight, total feed consumption, bird weight gain, and feed conversion ratio between the treatment groups. There were no significant differences in SE CFU per gram for fecal, litter, or feed between the treatment groups CONSE and PSSE. However, for both fecal and litter, the PSSE treatment group tended (P ≤ 0.1) to have a lower Salmonella CFU per gram compared with the CONSE treatment group. The results indicate that peanut skins may have potential application as an antimicrobial feed additive to reduce the transmission or proliferation of SE in poultry environments or flocks.

  2. 2

    المؤلفون: Alan Gutierrez, Keith R. Schneider

    المصدر: Journal of Applied Microbiology. 132:3265-3276

    الوصف: Aims This study examined the effects of water activity (aw), ammonia and Corynebacterium urealyticum on the survival of Salmonella Typhimurium in sterile poultry litter. Methods and Results Sterile poultry litter inoculated with S. Typhimurium was adjusted to pH 9.0, various aw levels (0.84, 0.92 and 0.96), and total ammonia nitrogen levels were increased either by the addition of ammonium sulphate or C. urealyticum inoculation with 1% urea added. All litter treatments were incubated at 30°C and sampled daily for five days. Similar results were observed at each aw level in both experiments. At 0.84 and 0.92 aw, S. Typhimurium populations in litter fell below 1 log CFU g−1 within 5 days, with no significant differences between the controls and increased ammonia treatments. At 0.96 aw, Salmonella populations treated with increased ammonia levels were significantly lower than control treatments on days 1–5. Conclusions This study showed that C. urealyticum can produce ammonia in litter at higher aw levels with sufficient available urea and that the antimicrobial efficacy of ammonia is dependent on high aw (~0.96) in litter. Significance and Impact of the Study These results provide insights into the production of ammonia in litter, its antimicrobial efficacy in litter and the importance of aw in this interaction.

  3. 3

    المصدر: Journal of Food Protection. 85:1446-1451

    الوصف: Organic matter (OM) accumulation is common in chill tanks used to decontaminate raw poultry parts during processing. OM negatively affects the antimicrobial activity of chlorine-based compounds, but its effect on the antimicrobial effectiveness of peroxyacetic acid (PAA) on poultry meat has not been described. Therefore, this study evaluated the effect of OM on the efficacy of PAA solutions in simulated postchill tanks to reduce Salmonella artificially inoculated onto chicken parts. Chicken thighs were inoculated with a five-strain cocktail of poultry-borne Salmonella enterica serovars at ca. 6 log CFU/mL. Then, the thighs were immersed for 30 or 45 s in PAA solutions (500 or 1,000 ppm) with chicken slurry to simulate OM accumulation (0, 15, or 30 g/L). The thighs were rinsed with neutralizing buffered peptone water (100 mL), and rinsates were plated onto xylose lysine desoxycholate agar. Experiments were performed in triplicate (three thighs per treatment per replicate). Chemical oxygen demand, total nitrogen, and pH were measured as the water quality parameters of the PAA solutions before and after use. Chemical oxygen demand ranged from 2,905 mg/L in unused 500-ppm solutions without added OM to 6,290 mg/L in used 1,000-ppm solutions with 30 g/L OM. Initial total nitrogen was 42.5 ± 2.0 and 60.9 ± 8.3 mg/L for 15 and 30 g/L OM, which increased by 27 ± 17 mg/L after use. The pH of solutions ranged from 3.16 ± 0.14 to 3.42 ± 0.09 for the 1,000-ppm solutions and from 3.59 ± 0.06 to 3.96 ± 0.06 for the 500-ppm solutions. Mean Salmonella reductions were 0.9 ± 0.1 log CFU/mL of rinsate for the 500-ppm PAA treatment and 1.1 ± 0.1 log CFU/mL of rinsate for 1,000-ppm PAA treatment. Exposure time did not have a significant effect on the logarithmic reductions. There was no significant effect of OM concentration (P0.05) on the reductions, indicating that the antimicrobial efficacy was not affected and that PAA solutions may continue to be reused as long as the PAA concentration is actively monitored.

  4. 4

    المصدر: Applied Microbiology and Biotechnology. 106:5701-5713

    الوصف: Abstract A total no. of 65 Salmonella enterica isolates recovered from food samples, feces of diarrheic calves, poultry, and hospital patient in large five cities at Northern West Egypt were obtained from the Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. The 65 Salmonella enterica isolates had the invA gene were grouped into 11 Salmonella enterica serovars with dominance of S. Enteritidis and S. Kentucky serovars. Their resistance pattern were characterized by using 18 antibiotics from different classes. Approximately 80% of the isolates were multidrug resistant (MDR). Enterobacterial repetitive intergenic consequences polymerase chain reaction (ERIC-PCR) typing of 7 strains of S. Enteritidis showed 5 clusters with dissimilarity 25%. S. Enteritidis clusters in 2 main groups A and B. Group A have 2 human strain (HE2 and HE3) and one food origin (FE7) with a similarity 99%. Group B divided into B1 (FE2) and B2 (FE3) with a similarity ratio ≥ 93%, while ERIC-PCR analysis of 5 strains of S. Kentucky revealed 4 ERIC types, clustered in 2 main groups A and B with similarity 75%. We studied the effect of silver nanoparticles (Ag-NPs) on 10 antibiotic resistant strains of S. Enteritidis and S. Kentucky. The broth microdilution minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were detected. Evaluation of the affection using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed different ratios of Ag-NPs and microorganism as well as at different contact time ended finally with morphological alteration of the bacteria. We submitted new method in vivo to explore the activity of nanosilver in chicken. Key points • Importance of ERIC-PCR to determine the relatedness between Salmonella isolates. • Effect of silver nanoparticles to confront the antibacterial resistance. • Studying the effect of silver nanoparticles in vivo on infected chicken with Salmonella.

  5. 5

    المصدر: Food and Environmental Virology. 14:1-9

    الوصف: Salmonella contamination is a critical problem in poultry farms, with serious consequences for both animals and food products. The aim of this study is to investigate the use of phage cocktails to reduce Salmonella contamination in poultry farms. Within the scope of the study, Salmonella phages were isolated from chicken stool. After the host range of phages was determined, morphological characterization was performed through transmission electron microscopy analysis. Then, replication parameters and adsorption rates were determined by one-step growth curves. After that, phage cocktail was prepared, and its effectiveness was tested in three environments, which were drinking water, shavings, and plastic surfaces. The results obtained have demonstrated that the phage cocktail can reduce Salmonella count up to 2.80 log10 units in drinking water, up to 2.30 log10 units on shavings, and 2.31 log10 units on plastic surfaces. It has been determined that phage cocktails could be a successful alternative in reducing Salmonella contamination in poultry environment. This work is the first study to investigate the use of phage cocktails for reducing Salmonella contamination in poultry water and on shavings, and it is presumed that the results obtained will contribute to the fight against pathogens by making them applicable to poultry farms.

  6. 6

    المصدر: Journal of AOAC INTERNATIONAL. 105:1503-1515

    الوصف: Background Improvement in Salmonella detection methods greatly enhances the efficiency of various food testing programs. A Salmonella loop-mediated isothermal amplification (LAMP) assay has been validated in animal food through multi-laboratory validation. Objective The study aimed to demonstrate the versatility of this molecular assay while expanding it to multiple platforms and various reagent choices for use in animal food testing. Methods Following the U.S. Food and Drug Administration (FDA)’s Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, we examined the inclusivity, exclusivity, and LOD of the assay using two platforms (7500 Fast and Genie II) and three LAMP master mixes (GspSSD, GspSSD2.0, and WarmStart) in seven animal food matrixes (dry cat food, dry dog food, cattle feed, dairy feed, horse feed, poultry feed, and swine feed). The FDA’s Bacteriological Analytical Manual (BAM) Salmonella culture method was the reference method. Results Inclusivity and exclusivity data were consistent among all six platform and master mix combinations with a few exceptions. Comparable LODs were observed down to the single-cell level (WarmStart was 10-fold less sensitive). Performance was similar to the BAM method for detecting fractional positive results in seven animal food matrixes. Nonetheless, LAMP time to positive results and annealing/melting temperature differed among master mixes and platforms. Conclusion The Salmonella LAMP assay was successfully validated in two platforms and three master mixes, making it a flexible tool for use by the FDA’s field laboratories in regulatory testing of animal food and for adoption by other food testing programs. Highlights We demonstrated the LAMP assay’s versatility on two platforms and three master mixes for the rapid and reliable screening of Salmonella in seven animal food matrixes. GspSSD2.0 was the fastest master mix (time to positive results as early as 3.5 min) while Genie II had several attractive features from a user perspective.

  7. 7

    المساهمون: Swanson, Michele S

    المصدر: mBio, vol 14, iss 1

    الوصف: Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 post-hatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 post-hatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis, and GS-MS on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of Enterococci in STm infected chicks. Unique metabolites including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, was present only in the cecal content of STm infected chicks. Metagenomic data suggested that the microbiota in STm infected chicks contained a higher abundance of genes, from STm itself, involved in branched chain amino acid synthesis. We generated a deletion mutant in ilvC (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of L-isoleucine and L-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development.IMPORTANCEChicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses we captured the development of the chick microbiota to 19 days post-hatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves, and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make L-isoleucine and L-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.

    وصف الملف: application/pdf

  8. 8

    المصدر: Zoonoses and Public Health. 69:13-22

    الوصف: Worldwide, foodborne illness is a significant public health issue in both developed and developing countries. Salmonellosis, campylobacteriosis and shigellosis are common foodborne gastrointestinal illnesses caused by the bacteria Salmonella spp., Campylobacter spp. and Shigella spp. respectively. These zoonotic diseases are frequently linked to eggs and poultry products. The aim of this study was to investigate the presence of these pathogens in Australian backyard poultry flocks and to determine risk factors for these pathogens. Poultry faeces samples were collected from 82 backyards and screened for Salmonella spp., Campylobacter spp. and Shigella spp. using qPCR. A questionnaire was administered to the backyard poultry owners to assess their knowledge regarding management of poultry and eggs and to identify potential risk factors that may contribute to the presence of zoonotic pathogens in the flocks. One composite faecal sample was collected from each backyard (82 samples). Composite sampling here means taking one or more grab samples from a backyard to make up approximately 10 grams. Four per cent of samples, that is 4% backyards tested, were positive for Salmonella spp., 10% were positive for Campylobacter spp. and none were positive for Shigella spp. A higher infection rate was seen in multi-aged flocks (24%) compared with the single-aged flocks (3%). The survey found that many participants were engaging in risky food safety behaviours with 46% of participants responding that they washed their eggs with running water or still water instead of wiping the dirt off with a damp cloth to clean the eggs and 19% stored their eggs at room temperature. This study demonstrated that backyard poultry may pose a potential risk for salmonellosis and campylobacteriosis. Additionally, Australian public health and food safety regulations should be modified and effectively implemented to address the risks associated with backyard poultry husbandry.

  9. 9

    المصدر: Microbiology Spectrum. 10

    الوصف: Paratyphoid avian salmonellosis is considered one of the leading causes of poultry death, resulting in significant economic losses to poultry industries worldwide. In China, especially in Shandong province, the leading producer of poultry products, several recurrent outbreaks of avian salmonellosis have been reported during the last decade where the precise causal agent remains unknown. Moreover, the establishment of earlier and more accurate recognition of pathogens is a key factor to prevent the further dissemination of resistant and/or hypervirulent clones. Here, we aim to use whole-genome sequencing combined with

  10. 10

    المصدر: Zoonoses and Public Health. 69:487-498

    الوصف: Salmonella can enter hatcheries via contaminated eggs and other breaches of biosecurity. The study examined the prevalence and distribution of Salmonella in commercial hatcheries and assessed the effects of providing advice on Salmonella control. Intensive swab sampling was performed throughout 23 broiler hatcheries in Great Britain (GB). Swabs were cultured using a modified ISO6579:2017 method. After each visit, tailored advice on biosecurity and cleaning and disinfection procedures was provided to the hatchery managers. Repeat sampling was carried out in 10 of the 23 hatcheries. Salmonella prevalence ranged between 0% and 33.5%, with the chick handling areas, hatcher areas, macerator area, tray wash/storage areas, external areas and other waste handling areas being more contaminated than the setter areas. Salmonella Senftenberg and Salmonella 13,23:i:- were the most commonly isolated serovars. There was a reduction in Salmonella prevalence at the second visit in eight out of 10 premises, but prevalence values had increased again in all of the improved hatcheries that were visited a third time. One hatchery harboured a difficult-to-control resident Salmonella 13,23:i:- strain and was visited six times; by the final visit, Salmonella prevalence was 2.3%, reduced from a high of 23.1%. In conclusion, the study found low-level Salmonella contamination in some GB broiler hatcheries, with certain hatcheries being more severely affected. Furthermore, it was shown that Salmonella typically is difficult to eradicate from contaminated hatcheries, but substantial reductions in prevalence are possible with improvements to biosecurity, cleaning and disinfection.