يعرض 1 - 1 نتائج من 1 نتيجة بحث عن '"Image (category theory)"', وقت الاستعلام: 1.26s تنقيح النتائج
  1. 1

    المؤلفون: A. Yu. Ukhalov, Mikhail Nevskii

    المصدر: Automatic Control and Computer Sciences. 52:667-679

    الوصف: Let $$n \in \mathbb{N}$$ , $${{Q}_{n}} = {{[0,1]}^{n}}.$$ For a nondegenerate simplex $$S \subset {{\mathbb{R}}^{n}}$$ , by $$\sigma S$$ we denote the homothetic image of $$S$$ with center of homothety in the center of gravity of $$S$$ and ratio of homothety $$\sigma $$ . By $${{d}_{i}}(S)$$ we mean the $$i$$ th axial diameter of $$S$$ , i. e. the maximum length of a line segment in $$S$$ parallel to the $$i$$ th coordinate axis. Let $$\xi (S) = min{\text{\{ }}\sigma \geqslant 1:{{Q}_{n}} \subset \sigma S{\text{\} }},$$ $${{\xi }_{n}} = min{\text{\{ }}\xi (S):S \subset {{Q}_{n}}{\text{\} }}.$$ By $$\alpha (S)$$ we denote the minimal $$\sigma > 0$$ such that $${{Q}_{n}}$$ is contained in a translate of simplex $$\sigma S$$ . Consider $$(n + 1) \times (n + 1)$$ -matrix $${\mathbf{A}}$$ with the rows containing coordinates of vertices of $$S$$ ; last column of $${\mathbf{A}}$$ consists of 1’s. Put $${{{\mathbf{A}}}^{{ - 1}}}$$ $$ = ({{l}_{{ij}}})$$ . Denote by $${{\lambda }_{j}}$$ linear function on $${{\mathbb{R}}^{n}}$$ with coefficients from the $$j$$ th column of $${{{\mathbf{A}}}^{{ - 1}}}$$ , i.e. $${{\lambda }_{j}}(x) = {{l}_{{1j}}}{{x}_{1}} + \ldots + {{l}_{{nj}}}{{x}_{n}} + {{l}_{{n + 1,j}}}.$$ Earlier the first author proved the equalities $$\tfrac{1}{{{{d}_{i}}(S)}} = \tfrac{1}{2}\sum\nolimits_{j = 1}^{n + 1} \left| {{{l}_{{ij}}}} \right|,\alpha (S) = \sum\nolimits_{i = 1}^n \tfrac{1}{{{{d}_{i}}(S)}}.$$ In the present paper we consider the case $$S \subset {{Q}_{n}}$$ . Then all the $${{d}_{i}}(S) \leqslant 1$$ , therefore, $$n \leqslant \alpha (S) \leqslant \xi (S).$$ If for some simplex $$S{\kern 1pt} {{'}} \subset {{Q}_{n}}$$ holds $$\xi (S{\kern 1pt} {{'}}) = n,$$ then $${{\xi }_{n}} = n$$ , $$\xi (S{\kern 1pt} {{'}}) = \alpha (S{\kern 1pt} {{'}})$$ , and $${{d}_{i}}(S{\kern 1pt} {{'}}) = 1$$ . However, such the simplices S ' exist not for all the dimensions $$n$$ . The first value of $$n$$ with such a property is equal to $$2$$ . For each 2-dimensional simplex, $$\xi (S) \geqslant {{\xi }_{2}} = 1 + \tfrac{{3\sqrt 5 }}{5} = 2.34 \ldots > 2$$ . We have an estimate $$n \leqslant {{\xi }_{n}} < n + 1$$ . The equality $${{\xi }_{n}} = n$$ takes place if there exist an Hadamard matrix of order $$n + 1$$ . Further investigation showed that $${{\xi }_{n}} = n$$ also for some other $$n$$ . In particular, simplices with the condition $$S \subset {{Q}_{n}} \subset nS$$ were built for any odd $$n$$ in the interval $$1 \leqslant n \leqslant 11$$ . In the first part of the paper we present some new results concerning simplices with such a condition. If $$S \subset {{Q}_{n}} \subset nS$$ , then center of gravity of $$S$$ coincide with center of $${{Q}_{n}}$$ . We prove that $$\sum\nolimits_{j = 1}^{n + 1} \left| {{{l}_{{ij}}}} \right| = 2\,(1 \leqslant i \leqslant n),\sum\nolimits_{i = 1}^n \left| {{{l}_{{ij}}}} \right| = \tfrac{{2n}}{{n + 1}}(1 \leqslant j \leqslant n + 1).$$ Also we give some corollaries. In the second part of the paper we consider the following conjecture. Let for simplex $$S \subset {{Q}_{n}}$$ an equality $$\xi (S) = {{\xi }_{n}}$$ holds. Then $$(n - 1)$$ -dimensional hyperplanes containing the faces of $$S$$ cut off from the cube $${{Q}_{n}}$$ the equal-sized parts. Though it is true for $$n = 2$$ and $$n = 3$$ , in general case this conjecture is not valid.