يعرض 1 - 10 نتائج من 411 نتيجة بحث عن '"Computer networks"', وقت الاستعلام: 0.84s تنقيح النتائج
  1. 1

    المصدر: Journal of Microelectronics and Electronic Packaging. 19:25-38

    الوصف: Rigid-flex circuit boards are becoming more prevalent as the limits are pushed on the size, mass, and geometry of electronic systems. A key aspect of designing a rigid-flex printed circuit boards (PCB) system is an assessment of the dynamic properties of the PCB and predicting system performance under dynamic loading. Among current modeling methodologies for rigid-flex PCB, a simplified modeling methodology that adequately captures the system dynamics does not exist. This article presents a novel, computationally efficient approach for modeling rigid-flex PCB systems and the calibration of the material models via modal testing. The resulting simplified model is able to capture system frequencies, mode shapes, and representative force-displacement behavior. The proposed methodology is used to model NASA Jet Propulsion Laboratory’s Pop-Up Flat Folding Explorer Robot (PUFFER) and assess the sensitivity of a system model to input parameters.

  2. 2

    المساهمون: Publica

    المصدر: Journal of Microelectronics and Electronic Packaging. 19:18-24

    الوصف: Despite the higher thermal conductivity and the higher lifetime offered by silver sintering technologies, most packaged GaN devices are attached using solders due to technological difficulties in the sintering process. In this work, a silver sintering process for a packaged GaN power transistor on a printed circuit board (PCB) was successfully developed. Different sintering paste types were examined regarding their suitability for this application. Electrical measurements, shear tests, and metallographic cross sections were used for the evaluation. Numerical analyses were used to study the internal stress distribution in the GaN package after sintering depending on the paste structure. In the final sintering process, a shear strength of 20 MPa for sintering at 15 MPa and 240°C, for 300 s with electrical functional devices could be obtained by using nanoscale sintering paste. The authors contribute this to the high initial stiffness of the silver layer, which is obtained much earlier in the sintering process compared with the stiffness of a microscale silver paste. This high initial stiffness counteracts the semiconductor device deflection from the applied sintering pressure and reduces the stresses inside the semiconductor.

  3. 3

    المساهمون: Publica

    المصدر: Journal of Microelectronics and Electronic Packaging. 19:1-7

    الوصف: Sensors are the key elements for capturing environmental properties and are increasingly important in the industry for the intelligent control of industrial processes. While in many everyday objects highly integrated sensor systems are already state of the art, the situation in an industrial environment is clearly different. Frequently, the use of sensor systems is impossible, because the extreme ambient conditions of industrial processes like high operating temperatures or strong mechanical load do not allow the reliable operation of sensitive electronic components. Fraunhofer is running the Lighthouse Project “eHarsh” to overcome this hurdle. In the course of the project, an integrated sensor readout electronic has been realized based on a set of three chips. A dedicated sensor fron-tend provides the analog sensor interface for resistive sensors typically arranged in a Wheatstone configuration. Furthermore, the chipset includes a 32-bit microcontroller for signal conditioning and sensor control. Finally, it comprises an interface chip including a bus transceiver and voltage regulators. The chipset has been realized in a high-temperature 0.35-micron SOI-CMOS technology focusing operating temperatures up to 300°C. The chipset is assembled on a multilayer ceramic low-temperature cofired ceramics (LTCC) board using flip chip technology. The ceramic board consists of four layers with a total thickness of approximately 0.9 mm. The internal wiring is based on silver paste while the external contacts were alternatively manufactured in silver (sintering/soldering) or in gold alloys (wire bonding). As an interconnection technology, silver sintering has been applied. It has already been shown that a significant increase in lifetime can be reached by using silver sintering for die attach applications. Using silver sintering for flip chip technology is a new and challenging approach. By adjusting the process parameter geared to the chipset design and the design of the ceramic board high-quality flip chip interconnects can be generated.

  4. 4

    المصدر: Journal of Microelectronics and Electronic Packaging. 19:39-47

    الوصف: The reliability of electronic assemblies is a vital criterion used to assure product quality over its lifetime. Weibull distribution is the most common distribution utilized to describe the reliability data. Most of the studies use the Weibull scale parameter, or characteristic life, to compare alternatives and make a selective decision. This may not lead to achieving the optimal parameters which can be problematic because this method doesn’t consider the variability behavior of the fatigue life. In this study, a new approach for process parameters selection is proposed to find the optimal parameter values that improve the micro-optimality selection process based on reliability data. In this study, a new approach is proposed based on examining the solder joint reliability by using a multi criteria analysis. The fuzzy logic is utilized as a tool to solve the multi criteria problem that is presented from the proposed approach. The reliability of microelectronic connections in thermal cycling operating conditions is used as a validation case study. In the validation case study, the optimal process parameters are found for ball grid array electronic components. Two levels of the solder sphere materials, three levels of the surface finish, and 10 levels of solder paste alloys are studied as process parameters. Using the proposed approach, four quality responses are employed to assess the reliability data, including the scale parameter, the B10 (life at 10% of the population failure), mean-standard deviation response, and the signal to noise ratio (SNR). The fuzzy logic is applied to solve the multiresponse problem. An optimal process parameter setting that considers different quality characteristics was found for the validation case study. ENIG surface finish, SAC305 solder sphere, and material six were the optimal factor levels that are obtained for the aged CABGA208 component using the proposed approach.

  5. 5

    المصدر: Journal of Microelectronics and Electronic Packaging. 18:161-167

    الوصف: To enable an electrical feedthrough integrated down-hole logging tool to maintain high reliability during its logging service in any hostile wellbores, it is critical to apply some guidelines for the electrical feedthrough designs. This paper introduces a safety factor-based design guideline to ensure an integrated electrical feedthrough has sufficient compression or thermomechanical stress amplitude in the stress well against potential logging failures. It is preferred to have a safety actor of 1.5–2.0 for an electrical feedthrough at lowest temperature, such as −60°C, and a safety actor of 2.5–5.0 at operating temperature range of 200–260°C. Moreover, the designed ambient pressure capability should be 1.5–2.0 times higher than the maximum downhole pressure, such as 25,000–30,000 PSI. To validate this thermomechanical stress model, several electrical feedthrough prototypes have been tested under simulated 200–260°C and 31,000–34,000 PSI downhole conditions. The observed testing data have demonstrated that there is a maximum allowable operating pressure for an electrical feedthrough operating at a specific downhole temperature. It is clearly demonstrated that an electrical feed-through may operate up to 60,000 PSI at ambient temperature in a real-life application, but it may actually operate up to 30,000–35,000 PSI at 200–260°C downhole temperatures.

  6. 6

    المصدر: Journal of Microelectronics and Electronic Packaging. 18:168-176

    الوصف: Compact power electronic circuits and higher operating temperatures of switching devices call for an analysis and verification on the impact of the parasitic components in these devices. The found drift mechanisms in a gallium-nitride field effect transistors (GaN-FET) are studied by literature and related to measurement results. The measurements in extreme temperature conditions are far beyond the manufacturer-recommended operating range. Influences to parasitic elements in both static and dynamic operation of the GaN-FETs are investigated and related toward device losses in switch-mode power electronic circuits with the example of a half-bridge circuit. In this article, static operation investigation on the effect of temperature toward resistance, leakage currents, and reverse conduction is conducted. Dynamic operation between the two states of GaN-FET is also addressed and related to the potential impact in a switching circuit losses. A thermal chamber was built to precisely measure the effect of temperature toward parasitic elements in the devices using a curve tracer. It was found that the increment in RDSon, IDSS, IGSS, and VSD can be justified by the literature and verified by measurements. Incremental COSS and decreasing VGSth was found when exposing devices to extreme temperatures. These two parameters give real challenge over designing circuits at high temperature where timing is critical. Albeit temperature challenges, it is found that investigated GaN-FETs have potential to be used in extreme temperature-operating conditions.

  7. 7

    المصدر: Journal of Microelectronics and Electronic Packaging. 18:183-189

    الوصف: Laser ultrasonic inspection is a novel, noncontact, and nondestructive technique to evaluate the quality of solder interconnections in microelectronic packages. In this technique, identification of defects or failures in solder interconnections is performed by comparing the out-of-plane displacement signals, which are produced from the propagation of ultrasonic waves, from a known good reference sample and sample under test. The laboratory-scale dual-fiber array laser ultrasonic inspection system has successfully demonstrated identifying the defects and failures in the solder interconnections in advanced microelectronic packages such as chip-scale packages, plastic ball grid array packages, and flip-chip ball grid array packages. However, the success of any metrology system depends upon precise and accurate data to be useful in the microelectronic industry. This paper has demonstrated the measurement capability of the dual-fiber array laser ultrasonic inspection system using gage repeatability and reproducibility analysis. Industrial flip-chip ball grid array packages have been used for conducting experiments using the laser ultrasonic inspection system and the inspection data are used to perform repeatability and reproducibility analysis. Gage repeatability and reproducibility studies have also been used to choose a known good reference sample for comparing the samples under test.

  8. 8

    المؤلفون: John H Lau

    المصدر: International Symposium on Microelectronics. 2021:000049-000059

    الوصف: In this study, the recent advances and trends of chip-let design and heterogeneous integration packaging will be investigated. Emphasis is placed on the definition, kinds, advantages and disadvantages, lateral interconnects, and examples of chiplet design and heterogeneous integration packaging. Also, emphasis is placed on the fundamental and examples of hybrid bonding.

  9. 9

    المؤلفون: Andrej Novikov, Mathias Nowottnick

    المصدر: Journal of Microelectronics and Electronic Packaging. 19

    الوصف: The thermal load on electronic assemblies is constantly increasing. The reasons for this increase are, on the one hand, the integration of power electronic components in an ever smaller space and, thus, an increasing power density and, on the other hand, the increasingly harsh environmental conditions with high temperature load. In addition to electronic components and substrate materials, the soldered connections are also exposed to this stress and must withstand it. The thermal stability is primarily determined by the melting temperature of the solder material or by the remelting temperature of the final solder interconnection. The remelting temperature can be purposefully increased through diffusion soldering. The advantage of diffusion soldering is that the operating temperature of the final solder joint can exceed the joining process temperatures. By using the composite soldering materials and diffusion soldering process, it is possible to produce the solder interconnections that can withstand the high thermal and thermomechanical stress. In this work, the composite solder material, consisting of the base solder alloy BiSnAg in eutectic composition with a melting point of 139 degrees C and added copper particles, was examined. The added copper particles have a direct influence on the dynamics of the diffusion process. Diffusion can also be influenced by adjusting the soldering process parameters, such as maximum temperature and time above liquidus of the base solder alloy, with the aim of achieving isothermal solidification. The solidification can take place through the parallel reactions: the reaction between tin and copper with the formation of high-melting intermetallic phases Cu3Sn and Cu6Sn5 and the growth of bismuth (Bi) crystals through coarsening of the structure and tin depletion in the original eutectic solder alloy.

  10. 10

    المصدر: Journal of Microelectronics and Electronic Packaging. 19

    الوصف: Increasingly high demands are being placed on the quality inspection of printed circuit boards (PCBs). A full surface inspection of all produced PCBs and a high defect detection accuracy of the inspection system are becoming prerequisites for an efficient quality management. At the same time, the demand for PCBs is constantly increasing over the years due to the high demand for electrical devices. Human inspection is no longer feasible due to the high production rates and required defect detection accuracy. Therefore, automatic inspection systems are increasingly used for quality control in the various process steps of PCB production. In this article, the first automatic inspection system for detecting defects on Electroless Nickel Immersion Gold (ENIG) and Electroless Nickel Immersion Palladium Immersion Gold (ENIPIG) surfaces is presented. A pretrained convolutional neural network (CNN) and the sliding window approach are used. A training dataset consisting of six different defect types and an OK class containing only defect-free PCB images was labeled for this classification problem. The hyperparameters learning rate and batch size are varied for different training runs of the CNN, and the performance of the network in PCB defect detection is evaluated using a test dataset. The true-positive rate, truenegative rate, and F1-score were analyzed for the evaluation. Our results show that the best performances could be achieved at low batch sizes and low learning rates.