يعرض 1 - 10 نتائج من 101 نتيجة بحث عن '"Alcoholic Beverages"', وقت الاستعلام: 0.98s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Nishimura, Akira

    المصدر: Bioscience, Biotechnology & Biochemistry; Feb2024, Vol. 88 Issue 2, p131-137, 7p

    مستخلص: The quality of alcoholic beverages strongly depends on the metabolic characteristics of the yeast cells being used. To control the aroma and the taste of alcoholic beverages, as well as the production of ethanol in them, it is thus crucial to select yeast cells with the proper characteristics. Grape must contain a high concentration of proline, an amino acid that can potentially be a useful nitrogen source. However, Saccharomyces cerevisiae cannot utilize proline during the wine-making process, resulting in the elevated levels of proline in wine and consequent negative effects on wine quality. In this article, I review and discuss recent discoveries about the inhibitory mechanisms and roles of proline utilization in yeast. The information can help in developing novel yeast strains that can improve fermentation and enhance the quality and production efficiency of wine. [ABSTRACT FROM AUTHOR]

    : Copyright of Bioscience, Biotechnology & Biochemistry is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  2. 2
    دورية أكاديمية

    المصدر: Genes to Cells; Oct2023, Vol. 28 Issue 10, p736-745, 10p

    مستخلص: Since yeast research under laboratory conditions is usually conducted at 25–30°C (moderate temperature range), most of the findings on yeast physiology are based on analyses in this temperature range. Due to inefficiencies in cultivation and analysis, insufficient information is available on yeast physiology in the low‐temperature range, although alcoholic beverage production is often conducted at relatively low temperatures (around 15°C). Recently, we reported that severe ethanol stress (10% v/v) inhibits proteasomal proteolysis in yeast cells under laboratory conditions at 28°C. In this study, proteasomal proteolysis at a low temperature (15°C) was evaluated using cycloheximide chase analysis of a short‐lived protein (Gic2‐3HA), an auxin‐inducible degron system (Paf1‐AID*‐6FLAG), and Spe1‐3HA, which is degraded ubiquitin‐independently by the proteasome. At 15°C, proteasomal proteolysis was not inhibited under severe ethanol stress, and sufficient proteasomal activity was maintained. These results provide novel insights into the effects of low temperature and ethanol on yeast physiology. [ABSTRACT FROM AUTHOR]

    : Copyright of Genes to Cells is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  3. 3
    دورية أكاديمية

    المصدر: Frontiers in Microbiology; 10/18/2021, Vol. 12, p1-21, 21p

    مستخلص: The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations. [ABSTRACT FROM AUTHOR]

    : Copyright of Frontiers in Microbiology is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  4. 4
    دورية أكاديمية

    المؤلفون: Purkait, Tirna, Pandey, Sangeeta

    المصدر: Medico-Legal Update; Oct-Dec2020, Vol. 20 Issue 4, p1375-1380, 6p

    مستخلص: Wine is called as a functional fermented food as it shows several health benefits. This fermented undistilled alcoholic beverage is produced by anaerobic fermentation of grape sugars to ethanol by the wine yeast. In this study, roselle (Hibiscus sabdariffa) and peppermint (Mentha piperita L.) extract were used for making the wine along with main ingredients to obtain nine variations of wine. All the ingredients are best known for their medicinal and nutritional benefits. Baker's yeast (Saccharomyces cerevisiae) was used for the fermentation process. Each variation along with the standard red wine (control) was fermented for 28 days. Characterization properties like pH and Total Soluble Solids were measured and observed weekly. After 28 days, sensory evaluation was conducted for the developed variations. The results showed that the variations with 10% of roselle were found to be the most accepted and amongst them, red wine with 10% roselle and 6% of peppermint extract (V2T3) was the best selected one by sensory panelists. The final products for all the variations and control were tested to measure their pH, specific gravity, alcohol content and vitamin C. The pH, specific gravity and alcohol by volume (%) of the most accepted variation (V2T3) were 2.96, 1.006 and 10.73% respectively. The results indicate developed red wine was accepted by the panelists. [ABSTRACT FROM AUTHOR]

    : Copyright of Medico-Legal Update is the property of Institute of Medico-legal publications Pvt Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  5. 5

    المصدر: International Microbiology. 25:1-15

    الوصف: This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits. Besides S. cerevisiae, all alcoholic beverages can contain other microorganisms and especially in spontaneous fermentation when starter cultures are not used. These other microbes are mostly lactic acid bacteria and other yeasts-the non-Saccharomyces yeasts. The interactions between all these microorganisms are very diverse and complex, as in any natural occurring ecosystem, including food fermentations. To describe them, we have followed a simplified ecological classification of the interactions. The negative ones are amensalism, by which a metabolic product of one species has a negative effect on others, and antagonism, by which one microbe competes directly with others. The positive interactions are commensalism, by which one species has benefits but no apparent effect on others, and synergism, by which there are benefits for all the microbes and also for the final product. The main interactions in alcoholic beverages are between S. cerevisiae and non-Saccharomyces and between yeasts and lactic acid bacteria. These interactions can be related to metabolites produced by fermentation such as ethanol, or to secondary metabolites such as proteinaceous toxins, or are feed-related, either by competition for nutrients or by benefit from released compounds during yeast autolysis. The positive or negative effects of these interactions on the organoleptic qualities of the final product are also revised. Focusing mainly on the alcoholic beverages produced by spontaneous fermentations, this paper reviews the interactions between the different yeasts and lactic acid bacteria in wine, cider, beer, and in spirits such as tequila, mezcal and cachaça.

  6. 6
    دورية أكاديمية

    المؤلفون: Benito, Santiago

    المصدر: Applied Microbiology & Biotechnology; Apr2018, Vol. 102 Issue 7, p3081-3094, 14p

    مصطلحات موضوعية: WINES, YEAST, ALCOHOLIC beverages, ETHANOL, SUGAR, SACCHAROMYCES, FERMENTATION

    مستخلص: Commercial Saccharomyces strains are usually inoculated to ferment alcoholic beverages due to their ability to convert all fermentable sugars into ethanol. However, modern trends in winemaking have turned toward less known, non-Saccharomyces yeast species. These species perform the first stages of natural spontaneous fermentation and play important roles in wine variety. New alcoholic fermentation trends have begun to consider objectives other than alcohol production to improve flavor diversity. This review explores the influence of the most used and commercialized non-Saccharomyces yeast, Torulaspora delbrueckii, on fermentation quality parameters, such as ethanol, glycerol, volatile acidity, volatile profile, succinic acid, mannoproteins, polysaccharides, color, anthocyanins, amino acids, and sensory perception. [ABSTRACT FROM AUTHOR]

    : Copyright of Applied Microbiology & Biotechnology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  7. 7
    دورية أكاديمية

    المصدر: PLoS ONE; 4/18/2017, Vol. 12 Issue 4, p1-21, 21p

    مستخلص: This work evaluated the effect of cocoa pulp as a malt adjunct on the parameters of fermentation for beer production on a pilot scale. For this purpose, yeast isolated from the spontaneous fermentation of cachaça (SC52), belonging to the strain bank of the State University of Feira de Santana-Ba (Brazil), and a commercial strain of ale yeast (Safale S-04 Belgium) were used. The beer produced was subjected to acceptance and purchase intention tests for sensorial analysis. At the beginning of fermentation, 30% cocoa pulp (adjunct) was added to the wort at 12°P concentration. The production of beer on a pilot scale was carried out in a bioreactor with a 100-liter capacity, a usable volume of 60 liters, a temperature of 22°C and a fermentation time of 96 hours. The fermentation parameters evaluated were consumption of fermentable sugars and production of ethanol, glycerol and esters. The beer produced using the adjunct and yeast SC52 showed better fermentation performance and better acceptance according to sensorial analysis. [ABSTRACT FROM AUTHOR]

    : Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  8. 8

    المصدر: Journal of Agricultural and Food Chemistry

    الوصف: The profile of volatile compounds was investigated using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) during bilberry juice fermentation with nine non-Saccharomyces yeasts, including Pachysolen tannophilus, Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Lachancea thermotolerans, Issatchenkia orientalis, and Saccharomycodes ludwigii. Dynamic changes in volatile compounds were determined simultaneously with the development of ethanol concentration during fermentation. H. uvarum or I. orientalis produced more ethyl acetate than other yeast strains throughout fermentation, while fermentation with M. pulcherrima resulted in high accumulation of higher alcohols. S. pombe was associated with high productions of pentane-2,3-dione, 3-hydroxybutan-2-one, 2-methylbutanal, and 3-methylbutanal. Among the 59 volatile compounds detected, generally, higher alcohols and monoterpenes accumulated constantly and reached the maximum concentration at the middle or later fermentation stage, whereas aldehydes, ketones, and acetals accumulated first followed by a significant drop. The production and accumulation dynamics of metabolites were highly dependent on the yeast species and the developing ethanol content.

  9. 9

    المصدر: International Journal of Food Microbiology. 303:1-8

    الوصف: To obtain beverages with reduced alcohol content, the use of unripe grapes, with low sugar and high malic acid concentration, was recently explored. Due to the low sugar, ethanol and glycerol production is limited during fermentation affecting important sensory aspects such as the palate fullness of these beverages. The high acidity influences their organoleptic quality, as well. So far, only S. cerevisiae starter, used in conventional fermentations, have been tested in this condition, and no selection has been performed to identify alternative yeasts suitable for unripe grape fermentation. S. bacillaris is known for the low ethanol tolerance, high glycerol and moderate volatile acidity production. Therefore, this non- Saccharomyces yeast have been investigated to improve the quality of low-alcohol beverages. Seven S. bacillaris strains were tested in synthetic musts with different sugar and malic acid levels, mimicking natural ripe and unripe grape musts. In all the tested conditions, S. bacillaris produced higher glycerol than S. cerevisiae. In single-strain fermentation at low sugar and high malic acid no S. bacillaris strains was able to transform all the sugars, although the produced ethanol was lower than that at high sugar condition. Therefore, sequential fermentations with S. cerevisiae were evaluated at low sugar and high malic acid. In this condition all the sugars were consumed and a significant glycerol increase was found. These results were confirmed when sequential fermentations were run in natural unripe grape must. Moreover, an increase in malic acid degradation, with respect to EC1118 single-strain fermentation, was observed.

  10. 10

    المصدر: FEMS Microbiology Letters. 368

    الوصف: Kocuria isolates collected from the sake brewing process have inhabited the Narimasa Sake Brewery in Toyama, Japan. To investigate the effect of these actinobacterial isolates on the growth and metabolism of sake yeast, co-cultivation of sake yeast and Kocuria isolates was performed in a medium containing tryptone, glucose and yeast extract (TGY), and a solution containing koji (steamed rice covered with Aspergillus oryzae) and glucose. In the TGY medium, the ethanol concentration and the number of living cells of each microorganism were measured. In the koji solution, the concentrations of ethanol and organic acids (citric acid, lactic acid and succinic acid) were measured. The results showed that in TGY media, the growth of each Kocuria isolate in the co-culture of the two Kocuria isolates was similar to that in each monoculture. However, the growth of both Kocuria isolates was inhibited in the co-cultures of sake yeast and Kocuria isolates. On the other hand, the growth and ethanol productivity of sake yeast did not differ between its monoculture and co-cultures with Kocuria isolates. In the koji solution, Kocuria isolates TGY1120_3 and TGY1127_2 affected the concentrations of ethanol and lactic acid, respectively. Thus, Kocuria isolates affected the microbial metabolism, but the effects were not identical between the two isolates. This strongly suggests that bacteria inhabiting a sake brewery may influence the flavor and taste of sake products of the brewery.