يعرض 1 - 10 نتائج من 16 نتيجة بحث عن '"Arun Asif"', وقت الاستعلام: 1.63s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: IEEE Access, Vol 12, Pp 37557-37571 (2024)

    الوصف: Viral and non-viral hepatocellular carcinoma (HCC) is becoming predominant in developing countries. A major issue linked to HCC-related mortality rate is the late diagnosis of cancer development. Although traditional approaches to diagnosing HCC have become gold-standard, there remain several limitations due to which the confirmation of cancer progression takes a longer period. The recent emergence of artificial intelligence tools with the capacity to analyze biomedical datasets is assisting traditional diagnostic approaches for early diagnosis with certainty. Here we present a review of traditional HCC diagnostic approaches versus the use of artificial intelligence (Machine Learning and Deep Learning) for HCC diagnosis. The overview of the cancer-related databases along with the use of AI in histopathology, radiology, biomarker, and electronic health records (EHRs) based HCC diagnosis is given.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Biomedicine & Pharmacotherapy, Vol 153, Iss , Pp 113350- (2022)

    الوصف: Conventional drug discovery and development is tedious and time-taking process; because of which it has failed to keep the required pace to mitigate threats and cater demands of viral and re-occurring diseases, such as Covid-19. The main reasons of this delay in traditional drug development are: high attrition rates, extensive time requirements, and huge financial investment with significant risk. The effective solution to de novo drug discovery is drug repurposing. Previous studies have shown that the network-based approaches and analysis are versatile platform for repurposing as the network biology is used to model the interactions between variety of biological concepts. Herein, we provide a comprehensive background of machine learning and deep learning in drug repurposing while specifically focusing on the applications of network-based approach to drug repurposing in Covid-19, data sources, and tools used. Furthermore, use of network proximity, network diffusion, and AI on network-based drug repurposing for Covid-19 is well-explained. Finally, limitations of network-based approaches in general and specific to network are stated along with future recommendations for better network-based models.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Biomedicines, Vol 9, Iss 10, p 1369 (2021)

    الوصف: The spheroid culture system provides an efficient method to emulate organ-specific pathophysiology, overcoming the traditional two-dimensional (2D) cell culture limitations. The intervention of microfluidics in the spheroid culture platform has the potential to enhance the capacity of in vitro microphysiological tissues for disease modeling. Conventionally, spheroid culture is carried out in static conditions, making the media nutrient-deficient around the spheroid periphery. The current approach tries to enhance the capacity of the spheroid culture platform by integrating the perfusion channel for dynamic culture conditions. A pro-inflammatory hepatic model was emulated using a coculture of HepG2 cell line, fibroblasts, and endothelial cells for validating the spheroid culture plate with a perfusable channel across the spheroid well. Enhanced proliferation and metabolic capacity of the microphysiological model were observed and further validated by metabolic assays. A comparative analysis of static and dynamic conditions validated the advantage of spheroid culture with dynamic media flow. Hepatic spheroids were found to have improved proliferation in dynamic flow conditions as compared to the static culture platform. The perfusable culture system for spheroids is more physiologically relevant as compared to the static spheroid culture system for disease and drug analysis.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Polymers, Vol 13, Iss 17, p 3016 (2021)

    الوصف: The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug screening. However, engineering microfluidic devices with standardized surface coatings of ECM may improve MPS-based organ-specific emulation for improved drug screening. The influence of surface coatings of different ECM types on tissue development needs to be optimized. Additionally, an intensity-based image processing tool and transepithelial electrical resistance (TEER) sensor may assist in the analysis of tissue formation capacity under the influence of different ECM types. The current study highlights the role of ECM coatings for improved tissue formation, implying the additional role of image processing and TEER sensors. We studied hepatic tissue formation under the influence of multiple concentrations of Matrigel, collagen, fibronectin, and poly-L-lysine. Based on experimental data, a mathematical model was developed, and ECM concentrations were validated for better tissue development. TEER sensor and image processing data were used to evaluate the development of a hepatic MPS for human liver physiology modeling. Image analysis data for tissue formation was further strengthened by metabolic quantification of albumin, urea, and cytochrome P450. Standardized ECM type for MPS may improve clinical relevance for modeling hepatic tissue microenvironment, and image processing possibly enhance the tissue analysis of the MPS.

    وصف الملف: electronic resource

  5. 5
  6. 6
  7. 7

    المصدر: Journal of Industrial and Engineering Chemistry. 98:318-326

    الوصف: In microfluidics, the emerging field of microphysiological systems (MPS) is overcoming the challenge of physiological irrelevancy by animal models for drug discovery and development. Liver function is critically influenced by drugs owing to its role in drug metabolism and detoxification. Human serum albumin (HSA) is one of the most important secreted biomarkers which indicate normal liver function. A microfluidic albumin immunosensor was developed to be integrated with liver-on-a-chip MPS for continuous feedback over disease modeling and treatment. A gold-electrode based electrochemical immunosensor was established by anti-HSA antibody immobilization. The liver MPS was found to be efficient for live monitoring of disease modelling and drug treatment over the period of 6 days. The system emulated and analyzed real-time toxicity modeling with HSA sensing. The detection limit of integrated sensor was 1 μg/ml with successive reproducibility. The proposed sensor was also validated with metabolic biomarkers’ assays. Molecular assays supported the sensor monitoring and depicted liver injury and recovery. The liver MPS with combined albumin sensor chip may be a promising platform to mimic real-time drug assessment.

  8. 8

    المصدر: ACS biomaterials scienceengineering. 8(9)

    الوصف: Renal ischemic-reperfusion injury decreases the chances of long-term kidney graft survival and may lead to the loss of a transplanted kidney. During organ excision, the cycle of warm ischemia from the donor and cold ischemia is due to storage in a cold medium after revascularization following organ transplantation. The reperfusion of the kidney graft activates several pathways that generate reactive oxygen species, forming a hypoxic-reperfusion injury. Animal models are generally used to model and investigate renal hypoxic-reperfusion injury. However, these models face ethical concerns and present a lack of robustness and intraspecies genetic variations, among other limitations. We introduce a microfluidics-based renal hypoxic-reperfusion (RHR) injury-on-chip model to overcome current limitations. Primary human renal proximal tubular epithelial cells and primary human endothelial cells were cultured on the apical and basal sides of a porous membrane. Hypoxic and normoxic cell culture media were used to create the RHR injury-on-chip model. The disease model was validated by estimating various specific hypoxic biomarkers of RHR. Furthermore, retinol, ascorbic acid, and combinational doses were tested to devise a therapeutic solution for RHR. We found that combinational vitamin therapy can decrease the chances of RHR injury. The proposed RHR injury-on-chip model can serve as an alternative to animal testing for injury investigation and the identification of new therapies.

  9. 9

    المصدر: Purinergic Signalling. 15:367-374

    الوصف: The primary malignancy of liver, known as hepatocellular carcinoma (HCC), comprises 9% of all hepatobiliary carcinomas. A steady rise has also been observed in adenocarcinoma (ADC) of the liver and ampullary carcinoma (AMC), ascending to 0.5% of gastrointestinal malignancies. Hepatobiliary carcinomas consist of 13% of all cancer occurrences worldwide. Purinergic receptor–based signaling holds the therapeutic potential based on its role in cell proliferation of several carcinomas. An altered ATP concentration in nanomoles may lead towards crucial changes in cancer growth patterns in liver tissue. A total of 40 tissue samples were collected (20 samples of HCC, 10 samples of ADC, and 10 samples of AMC) from patients that underwent surgery. P2X4 and P2X7 receptors exhibited significantly increased expression in HCC, ADC, and AMC samples as compared with the control tissue samples. While ADC and AMC samples showed higher expression of P2X4 and P2X7 than the control, statistically, HCC samples exhibited the most significant expression of both P2X4 and P2X7 receptors than control tissues. It may be inferred that higher expression of P2X4 and P2X7 receptors is significantly associated with the upregulated cellular stress leading to inflammation and it is plausible that both these receptors may be used in diagnostic, prognostic, and therapeutic tools for carcinoma studies in the future.

  10. 10

    المصدر: Polymers
    Polymers, Vol 13, Iss 3016, p 3016 (2021)
    Volume 13
    Issue 17

    الوصف: The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug screening. However, engineering microfluidic devices with standardized surface coatings of ECM may improve MPS-based organ-specific emulation for improved drug screening. The influence of surface coatings of different ECM types on tissue development needs to be optimized. Additionally, an intensity-based image processing tool and transepithelial electrical resistance (TEER) sensor may assist in the analysis of tissue formation capacity under the influence of different ECM types. The current study highlights the role of ECM coatings for improved tissue formation, implying the additional role of image processing and TEER sensors. We studied hepatic tissue formation under the influence of multiple concentrations of Matrigel, collagen, fibronectin, and poly-L-lysine. Based on experimental data, a mathematical model was developed, and ECM concentrations were validated for better tissue development. TEER sensor and image processing data were used to evaluate the development of a hepatic MPS for human liver physiology modeling. Image analysis data for tissue formation was further strengthened by metabolic quantification of albumin, urea, and cytochrome P450. Standardized ECM type for MPS may improve clinical relevance for modeling hepatic tissue microenvironment, and image processing possibly enhance the tissue analysis of the MPS.

    وصف الملف: application/pdf