يعرض 1 - 10 نتائج من 209 نتيجة بحث عن '"Bowling, David R"', وقت الاستعلام: 1.52s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية

    المصدر: Scientific Data. 9(1)

    مصطلحات موضوعية: Climate Action, Sustainable Cities and Communities

    الوصف: Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    المصدر: New Phytologist. 229(5)

    الوصف: Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near-surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated. Here, we integrate on-the-ground phenological observations, leaf-level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower-based CO2 flux measurements, and a predictive model to simulate seasonal canopy color dynamics. We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter-dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy-level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature-based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color. These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color-based vegetation indices.

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية

    المؤلفون: Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You-Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Reichstein, Markus, Ribeca, Alessio, van Ingen, Catharine, Vuichard, Nicolas, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Arain, M Altaf, Ardö, Jonas, Arkebauer, Timothy, Arndt, Stefan K, Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Marchesini, Luca Belelli, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D, Bohrer, Gil, Boike, Julia, Bolstad, Paul V, Bonal, Damien, Bonnefond, Jean-Marc, Bowling, David R, Bracho, Rosvel, Brodeur, Jason, Brümmer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P, Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Isaac, Christensen, Torben R, Cleverly, James, Collalti, Alessio, Consalvo, Claudia, Cook, Bruce D, Cook, David, Coursolle, Carole, Cremonese, Edoardo, Curtis, Peter S, D'Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth J, De Cinti, Bruno, de Grandcourt, Agnes, De Ligne, Anne, De Oliveira, Raimundo C, Delpierre, Nicolas, Desai, Ankur R, Di Bella, Carlos Marcelo, di Tommasi, Paul, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim Abdalla M, Eugster, Werner, Ewenz, Cacilia M, Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana

    المصدر: Scientific data. 8(1)

    الوصف: The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions.

    وصف الملف: application/pdf

  5. 5
  6. 6
    دورية أكاديمية
  7. 7
  8. 8
    دورية أكاديمية

    المؤلفون: Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You-Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Reichstein, Markus, Ribeca, Alessio, van Ingen, Catharine, Vuichard, Nicolas, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Arain, M Altaf, Ardö, Jonas, Arkebauer, Timothy, Arndt, Stefan K, Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Marchesini, Luca Belelli, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D, Bohrer, Gil, Boike, Julia, Bolstad, Paul V, Bonal, Damien, Bonnefond, Jean-Marc, Bowling, David R, Bracho, Rosvel, Brodeur, Jason, Brümmer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P, Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Isaac, Christensen, Torben R, Cleverly, James, Collalti, Alessio, Consalvo, Claudia, Cook, Bruce D, Cook, David, Coursolle, Carole, Cremonese, Edoardo, Curtis, Peter S, D'Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth J, Cinti, Bruno De, Grandcourt, Agnes de, Ligne, Anne De, De Oliveira, Raimundo C, Delpierre, Nicolas, Desai, Ankur R, Di Bella, Carlos Marcelo, Tommasi, Paul di, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim Abdalla M, Eugster, Werner, Ewenz, Cacilia M, Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana

    المصدر: Scientific data. 7(1)

    الوصف: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية

    المصدر: Proceedings of the National Academy of Sciences of the United States of America. 116(28)

    الوصف: The fluxes of energy, water, and carbon from terrestrial ecosystems influence the atmosphere. Land-atmosphere feedbacks can intensify extreme climate events like severe droughts and heatwaves because low soil moisture decreases both evaporation and plant transpiration and increases local temperature. Here, we combine data from a network of temperate and boreal eddy covariance towers, satellite data, plant trait datasets, and a mechanistic vegetation model to diagnose the controls of soil moisture feedbacks to drought. We find that climate and plant functional traits, particularly those related to maximum leaf gas exchange rate and water transport through the plant hydraulic continuum, jointly affect drought intensification. Our results reveal that plant physiological traits directly affect drought intensification and indicate that inclusion of plant hydraulic transport mechanisms in models may be critical for accurately simulating land-atmosphere feedbacks and climate extremes under climate change.

    وصف الملف: application/pdf

  10. 10
    دورية أكاديمية

    المصدر: Proceedings of the National Academy of Sciences of the United States of America. 116(24)

    الوصف: Northern hemisphere evergreen forests assimilate a significant fraction of global atmospheric CO2 but monitoring large-scale changes in gross primary production (GPP) in these systems is challenging. Recent advances in remote sensing allow the detection of solar-induced chlorophyll fluorescence (SIF) emission from vegetation, which has been empirically linked to GPP at large spatial scales. This is particularly important in evergreen forests, where traditional remote-sensing techniques and terrestrial biosphere models fail to reproduce the seasonality of GPP. Here, we examined the mechanistic relationship between SIF retrieved from a canopy spectrometer system and GPP at a winter-dormant conifer forest, which has little seasonal variation in canopy structure, needle chlorophyll content, and absorbed light. Both SIF and GPP track each other in a consistent, dynamic fashion in response to environmental conditions. SIF and GPP are well correlated (R 2 = 0.62-0.92) with an invariant slope over hourly to weekly timescales. Large seasonal variations in SIF yield capture changes in photoprotective pigments and photosystem II operating efficiency associated with winter acclimation, highlighting its unique ability to precisely track the seasonality of photosynthesis. Our results underscore the potential of new satellite-based SIF products (TROPOMI, OCO-2) as proxies for the timing and magnitude of GPP in evergreen forests at an unprecedented spatiotemporal resolution.

    وصف الملف: application/pdf