دورية أكاديمية

The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.

التفاصيل البيبلوغرافية
العنوان: The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.
المؤلفون: Govrin EM; Department of Plant Sciences, The Hebrew University of Jerusalem, Givat-Ram, Israel., Levine A
المصدر: Current biology : CB [Curr Biol] 2000 Jun 29; Vol. 10 (13), pp. 751-7.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Cell Press Country of Publication: England NLM ID: 9107782 Publication Model: Print Cited Medium: Print ISSN: 0960-9822 (Print) Linking ISSN: 09609822 NLM ISO Abbreviation: Curr Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Cambridge, MA : Cell Press
Original Publication: London, UK : Current Biology Ltd., c1991-
مواضيع طبية MeSH: Arabidopsis/*microbiology , Botrytis/*pathogenicity , Plant Diseases/*microbiology, Arabidopsis/immunology ; Arabidopsis/metabolism ; Ascomycota/pathogenicity ; Cell Death ; Oxidative Stress ; Plant Leaves/cytology ; Plant Leaves/metabolism ; Plant Leaves/microbiology ; Pseudomonas/growth & development ; Reactive Oxygen Species/metabolism ; Virulence
مستخلص: Background: Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of food and confine them to initial infection site. Necrotrophic pathogens, such as the fungi Botrytis cinerea and Sclerotinia sclerotiorum, however, can utilize dead tissue.
Results: Inoculation of B. cinerea induced an oxidative burst and hypersensitive cell death in Arabidopsis. The degree of B. cinerea and S. sclerotiorum pathogenicity was directly dependent on the level of generation and accumulation of superoxide or hydrogen peroxide. Plant cells exhibited markers of HR death, such as nuclear condensation and induction of the HR-specific gene HSR203J. Growth of B. cinerea was suppressed in the HR-deficient mutant dnd1, and enhanced by HR caused by simultaneous infection with an avirulent strain of the bacterium Pseudomonas syringae. HR had an opposite (inhibitory) effect on a virulent (biotrophic) strain of P. syringae. Moreover, H(2)O(2) levels during HR correlated positively with B. cinerea growth but negatively with growth of virulent P. syringae.
Conclusions: We show that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum. By contrast, B. cinerea triggers HR, which facilitates its colonization of plants. Hence, these fungi can exploit a host defense mechanism for their pathogenicity.
المشرفين على المادة: 0 (Reactive Oxygen Species)
تواريخ الأحداث: Date Created: 20000719 Date Completed: 20001003 Latest Revision: 20220409
رمز التحديث: 20221213
DOI: 10.1016/s0960-9822(00)00560-1
PMID: 10898976
قاعدة البيانات: MEDLINE
الوصف
تدمد:0960-9822
DOI:10.1016/s0960-9822(00)00560-1