دورية أكاديمية

A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes.

التفاصيل البيبلوغرافية
العنوان: A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes.
المؤلفون: Fraser LG; The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand. lfraser@hortresearch.co.nz, Tsang GK, Datson PM, De Silva HN, Harvey CF, Gill GP, Crowhurst RN, McNeilage MA
المصدر: BMC genomics [BMC Genomics] 2009 Mar 10; Vol. 10, pp. 102. Date of Electronic Publication: 2009 Mar 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2000-
مواضيع طبية MeSH: Genetic Linkage*, Actinidia/*genetics , Chromosome Mapping/*methods , Chromosomes, Plant/*genetics, Alleles ; DNA, Plant/genetics ; Gene Library ; Genes, Plant ; Genome, Plant ; Microsatellite Repeats ; Models, Genetic ; Sequence Analysis, DNA
مستخلص: Background: The genus Actinidia (kiwifruit) consists of woody, scrambling vines, native to China, and only recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding program would benefit greatly by knowledge of the trait alleles carried by both female and male parents. The application of marker assisted selection (MAS) in seedling populations would also aid the accurate and efficient development of novel fruit types for the market.
Results: Gene-rich female, male and consensus linkage maps of the diploid species A. chinensis have been constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified region (SCAR) markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully informative markers to other genes in this linkage group identified the comparative linkage group in the female map, where recombination ratios determining marker order were similar to the autosomes.
Conclusion: We have created genetic linkage maps that define the 29 linkage groups of the haploid genome, and have revealed the position and extent of the sex-determining locus in A. chinensis. As all Actinidia species are dioecious, we suggest that the sex-determining loci of other Actinidia species will be similar to that region defined in our maps. As the extent of the non-recombining region is limited, our result supports the suggestion that the subtelomeric region of an autosome is in the early stages of developing the characteristics of a sex chromosome. The maps provide a reference of genetic information in Actinidia for use in genetic analysis and breeding programs.
References: Nat Genet. 2002 Feb;30(2):194-200. (PMID: 11799393)
Genetics. 2000 Dec;156(4):1997-2005. (PMID: 11102390)
Plant Mol Biol. 2002 Mar-Apr;48(5-6):501-10. (PMID: 11999831)
Genetics. 2007 May;176(1):527-41. (PMID: 17409069)
Trends Biotechnol. 2005 Jan;23(1):48-55. (PMID: 15629858)
Genome. 1997 Jun;40(3):357-61. (PMID: 18464833)
Genome Res. 2008 Mar;18(3):422-30. (PMID: 18256239)
Theor Appl Genet. 2004 Apr;108(6):1010-6. (PMID: 15067386)
Theor Appl Genet. 1999 Jun;98(8):1279-92. (PMID: 12238515)
Mol Biol Evol. 1998 Oct;15(10):1275-87. (PMID: 9787434)
Genetics. 1988 Dec;120(4):947-58. (PMID: 2906309)
Genetics. 2002 Aug;161(4):1673-83. (PMID: 12196410)
Mol Ecol. 1993 Jun;2(3):131-7. (PMID: 8167848)
Theor Appl Genet. 2003 Dec;108(1):25-40. (PMID: 12923626)
Genetics. 2005 Jun;170(2):975-9. (PMID: 15834147)
Methods Mol Biol. 2000;132:365-86. (PMID: 10547847)
Genetics. 1990 Jul;125(3):645-54. (PMID: 1974227)
Theor Appl Genet. 2004 Apr;108(6):1140-6. (PMID: 15067401)
Am J Hum Genet. 1982 Nov;34(6):842-5. (PMID: 6960692)
Genetics. 1991 May;128(1):175-82. (PMID: 2060775)
Plant Physiol. 1987 Oct;85(2):393-9. (PMID: 16665709)
Mol Ecol. 2002 Dec;11(12):2453-65. (PMID: 12453231)
Nature. 2004 Jan 22;427(6972):348-52. (PMID: 14737167)
Curr Opin Biotechnol. 1990 Dec;1(2):166-71. (PMID: 1367853)
Genetics. 2000 Feb;154(2):857-67. (PMID: 10655236)
Heredity (Edinb). 2005 Aug;95(2):118-28. (PMID: 15931241)
Theor Appl Genet. 1995 Jan;90(1):43-8. (PMID: 24173782)
Genetics. 1992 Dec;132(4):1141-60. (PMID: 1360934)
Genetics. 2004 Jan;166(1):419-36. (PMID: 15020433)
Genetics. 1998 Jan;148(1):479-94. (PMID: 9475757)
Mol Genet Genomics. 2007 Sep;278(3):221-34. (PMID: 17609979)
Genetics. 2006 Sep;174(1):29-39. (PMID: 16988107)
Hum Mol Genet. 1993 Aug;2(8):1123-8. (PMID: 8401493)
Genetics. 2007 Aug;176(4):2637-50. (PMID: 17603124)
Theor Appl Genet. 2002 May;104(6-7):1185-1191. (PMID: 12582629)
BMC Genomics. 2008 Jul 27;9:351. (PMID: 18655731)
Genetics. 1994 Aug;137(4):1121-37. (PMID: 7982566)
المشرفين على المادة: 0 (DNA, Plant)
تواريخ الأحداث: Date Created: 20090317 Date Completed: 20090401 Latest Revision: 20211020
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC2661093
DOI: 10.1186/1471-2164-10-102
PMID: 19284545
قاعدة البيانات: MEDLINE
الوصف
تدمد:1471-2164
DOI:10.1186/1471-2164-10-102