دورية أكاديمية

The evolution of angiosperm lianescence without vessels--climbing mode and wood structure-function in Tasmannia cordata (Winteraceae).

التفاصيل البيبلوغرافية
العنوان: The evolution of angiosperm lianescence without vessels--climbing mode and wood structure-function in Tasmannia cordata (Winteraceae).
المؤلفون: Feild TS; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA., Chatelet DS; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA., Balun L; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.; Forestry Department, Bulolo University College, Bulolo, Morobe Province, Papua New Guinea., Schilling EE; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA., Evans R; Materials Science and Engineering, Sir Ian Wark Laboratories, CSIRO, Clayton, Victoria, Australia.
المصدر: The New phytologist [New Phytol] 2012 Jan; Vol. 193 (1), pp. 229-240. Date of Electronic Publication: 2011 Oct 13.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Biological Evolution*, Plant Vascular Bundle/*anatomy & histology , Winteraceae/*anatomy & histology , Winteraceae/*physiology , Wood/*anatomy & histology , Wood/*physiology, Australia ; Biomechanical Phenomena/radiation effects ; Light ; Microfibrils/chemistry ; Papua New Guinea ; Photosynthesis/radiation effects ; Plant Leaves/anatomy & histology ; Plant Leaves/physiology ; Plant Leaves/radiation effects ; Plant Vascular Bundle/physiology ; Plant Vascular Bundle/radiation effects ; Winteraceae/growth & development ; Winteraceae/radiation effects ; Wood/growth & development ; Wood/radiation effects ; Xylem/anatomy & histology ; Xylem/growth & development ; Xylem/radiation effects
مستخلص: • The lack of extant lianescent vessel-less seed plants supports a hypothesis that liana evolution requires large-diameter xylem conduits. Here, we demonstrate an unusual example of a lianoid vessel-less angiosperm, Tasmannia cordata (Winteraceae), from New Guinea. • Wood mechanical, hydraulic and structural measurements were used to determine how T. cordata climbs and to test for ecophysiological shifts related to liana evolution vs 13 free-standing congeners. • The tracheid-based wood of T. cordata furnished low hydraulic capacity compared with that of vessel-bearing lianas. In comparison with most nonclimbing relatives, T. cordata possessed lower photosynthetic rates and leaf and stem hydraulic capacities. However, T. cordata exhibited a two- to five-fold greater wood elastic modulus than its relatives. • Tasmannia cordata provides an unusual example of angiosperm liana evolution uncoupled from xylem conduit gigantism, as well as high plasticity and cell type diversity in vascular development. Because T. cordata lacks vessels, our results suggest that a key limitation for a vessel-less liana is that strong and low hydraulically conductive wood is required to meet the mechanical demands of lianescence.
(© 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.)
References: Bailey IW. 1944. The development of vessels in angiosperms and its significance in morphological research. American Journal of Botany 31: 421-442.
Brodribb TJ, Feild TS. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant, Cell & Environment 23: 1381-1388.
Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144: 1890-1898.
Burgert I. 2006. Exploring the micromechanical design of plant cell walls. American Journal of Botany 93: 1391-1401.
Burnham RJ. 2009. An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipos, and vines. Revista Brasilia Paleontologia 12: 149-160.
Caballé G. 1993. Liana structure, function and selection: a comparative study of xylem cylinders of tropical rainforest species in Africa and America. Botanical Journal of the Linnean Society 113: 41-60.
Carlquist S. 1975. Ecological strategies of xylem evolution. Berkeley, CA, USA: University of California Press.
Carlquist S. 1989. Wood anatomy of Tasmannia; summary of wood anatomy of Winteraceae. Aliso 12: 257-275.
Carlquist S. 1991. Anatomy of vines and liana stems: a review and synthesis. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 53-72.
Carlquist S. 2009. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Botanical Journal of the Linnean Society 161: 26-65.
Chican MA. 1986. Conductance in the wood of selected Carboniferous plants. Paleobiology 12: 302-310.
Donaldson L. 2008. Microfibril angle: measurement, variation, and relationships - a review. IAWA Journal 29: 345-386.
Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77-93.
Doust AN, Drinnan AN. 2004. Floral development and molecular phylogeny support the generic status of Tasmannia (Winteraceae). American Journal of Botany 91: 321-331.
Evans R. 2006. Wood stiffness by X-ray diffractometry. In: Stokke D, Groom L, eds. Characterisation of the cellulosic cell wall. Cambridge, UK: Blackwell Press, 23-69.
Ewers FW, Fisher JB. 1991. Why vines have narrow stems - histological trends in Bauhinia (Fabaceae). Oecologia 88: 233-237.
Ewers FW, Fisher JB, Chiu ST. 1990. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84: 544-552.
Feild TS, Balun L. 2008. Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea. New Phytologist 177: 665-675.
Feild TS, Brodribb T, Holbrook NM. 2002. Hardly a relict: freezing and the evolution of vesselless wood in Winteraceae. Evolution 56: 464-478.
Feild TS, Chatelet DS, Brodribb TJ. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology 7: 237-264.
Feild TS, Franks PJ, Sage TL. 2003. Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens (Austrobaileyaceae). International Journal of Plant Sciences 164: 313-324.
Feild TS, Hudson PJ, Balun L, Chatelet DS, Patino AA, Sharma CA, McLaren K. 2011. The ecophysiology of xylem hydraulic constraints by “basal” vessels in Canella winterana (Canellaceae). International Journal of Plant Sciences 172: 879-888.
Fisher JB, Ewers FW. 1995. Vessel dimensions in liana and tree species of Gnetum (Gnetales). American Journal of Botany 82: 1350-1357.
Fisher JB, Tan HTW, Toh LPL. 2002. Xylem of rattans: vessel dimensions in climbing palms. American Journal of Botany 89: 196-202.
Gartner BL, Bullock SH, Mooney HA, Brown VB, Whitbeck JL. 1990. Water transport properties of vine and tree stems in a tropical deciduous forest. American Journal of Botany 77: 742-749.
Gentry AG. 1991. The distribution and evolution of climbing plants. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 3-52.
Givnish TJ, Vermeij CJ. 1976. Sizes and shapes of liana leaves. American Naturalist 110: 743-778.
Gutierrez M, Miguel-Chavez RS, Terrezas T. 2009. Xylem conductivity and anatomical traits in diverse lianas and small tree species from a tropical forest of Southwest Mexico. International Journal of Botany 5: 279-286.
Hacke UG, Sperry JS, Feild TS, Sano Y, Sikkema EH, Pittermann J. 2007. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. International Journal of Plant Sciences 168: 1113-1126.
Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927-931.
Hope GS. 1976. The vegetational history of Mt. Wilhelm Papua New Guinea. Journal of Ecology 64: 627-663.
Hudson PJ, Razanatsoa J, Feild TS. 2010. Early vessel evolution and the diversification of wood function: insights from Malagasy Canellales. American Journal of Botany 97: 1-14.
Isnard S, Silk WK. 2009. Moving with climbing plants from Charles Darwin’s time into the 21st century. American Journal of Botany 96: 1205-1221.
Jagels R, Visscher GE. 2006. A synchronous increase in hydraulic conductive capacity and mechanical support in conifers with relatively uniform xylem structure. American Journal of Botany 93: 179-187.
Keunecke D, Evans R, Niemz P. 2009. Microstructural properties of common yew and Norway spruce determined with Silviscan. IAWA Journal 30: 165-178.
Marquínez X, Lohmann LG, Salatino MLF, Salation A, González F. 2009. Generic relationships and dating of lineage in Winteraceae based on nuclear (ITS) and plastid (rps16 and psbA-trnH) sequence data. Molecular Phylogenetics and Evolution 53: 435-449.
Matsumura J, Butterfield BG. 2001. Microfibril angles in the root wood of Pinus radiata and Pinus nigra. IAWA Journal 22: 57-62.
Ménard L, McKey D, Rowe N. 2009. Developmental plasticity and biomechanics of treelets and lianas in Manihot aff. quinquepartita (Euphorbiaceae): a branch-angle climber of French Guiana. Annals of Botany 103: 1249-1259.
Pace MR, Lohmann LG, Angyalossy V. 2009. The rise and evolution of the cambial variant in Bignonieae (Bignoniaceae). Evolution and Development 11: 465-479.
Pittermann J, Limm E, Rico C, Christman MA 2011. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytologist. doi: 10.1111/j.1469-8137.2011.03817.x.
Pittermann J, Sperry JS, Wheller JK, Hack UG, Sikkema EH. 2006. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell & Environment 18: 1618-1628.
Putz FE. 1984. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65: 1713-1724.
Putz FE. 1990. Liana stem diameter growth and mortality rates on Barro Colorado Island, Panama. Biotropica 22: 103-105.
Putz FE, Holbrook NM. 1991. Biomechanical studies of vines. In: Putz FE, Mooney HA, eds. The biology of vines. Cambridge, UK: Cambridge University Press, 53-72.
Raleigh RE, Ladiges PY, Entwisle TJ, Drinnan AN. 1994. Morphometric studies of the genus Tasmannia (Winteraceae) in Victoria, Australia. Mulleria 14: 235-256.
Rowe NP, Isnard S, Gallenuller F, Speck T. 2006. Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A, Speck T, Rowe NP, eds. Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. Boca Raton, FL, USA: Taylor and Francis, 35-59.
Schnitzer SA. 2005. A mechanistic explanation for global patterns of liana abundance and distribution. American Naturalist 166: 262-276.
Schnitzer SA, Bongers F. 2002. The ecology of lianas and their role in forests. Trends in Ecology and Evolution 17: 223-230.
Smith AC. 1943. Taxonomic notes on the Old World species of Winteraceae. Journal of the Arnold Arboretum 24: 119-164.
Speck T, Rowe NP. 1999. A quantitative approach for analytically defining size, growth form, and habit in living and fossil plants. In: Kurmann MH, Hemsley AR, eds. The evolution of plant architecture. Kew, UK: Royal Botanic Gardens, 447-479.
Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH. 2007. Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences 168: 1127-1139.
Venables MA. 1984. Oxford University expedition to Papua New Guinea, 1983. Bulletin of the Oxford University Explorers Club 7: 17-24.
Veres JS. 1990. Xylem anatomy and hydraulic conductance of Costa Rican Blechnum ferns. American Journal of Botany 77: 1610-1625.
Vink W. 1970. The Winteraceae of the Old World. I. Pseudowintera and Drimys- morphology and taxonomy. Blumea 18: 226-354.
Wade LL, McVean DM. 1969. Mount Wilhelm studies I: the Alpine and Sub-Alpine vegetation. Canberra, Australia: Research School of Pacific Studies, Department of Biogeography and Geomorphology, ANU, Publication BG/1.
Wilson JP, Knoll AH. 2010. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36: 335-355.
Wilson JP, Knoll AH, Holbrook NM, Marshall CR. 2008. Modelling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology 34: 472-493.
Wilson TK. 1966. The comparative morphology of the Canellaceae. II. Anatomy of the young stem and node. American Journal of Botany 52: 369-378.
Worth JRP, Jordan GJ, Marthick JR, McKinnon GE. 2010. Chloroplast evidence for geographic stasis of the Australian bird-dispersed shrub Tasmannia lanceolata (Winteraceae). Molecular Ecology 19: 2949-2963.
Zhu SD, Cao KF. 2009. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology 204: 295-304.
تواريخ الأحداث: Date Created: 20111015 Date Completed: 20120402 Latest Revision: 20210420
رمز التحديث: 20231215
DOI: 10.1111/j.1469-8137.2011.03917.x
PMID: 21995496
قاعدة البيانات: MEDLINE