دورية أكاديمية

Epidermal homeostasis and radiation responses in a multiscale tissue modeling framework.

التفاصيل البيبلوغرافية
العنوان: Epidermal homeostasis and radiation responses in a multiscale tissue modeling framework.
المؤلفون: Hu S; Universities Space Research Association, Division of Space Life Sciences, Houston, TX 77058, USA., Cucinotta FA
المصدر: Integrative biology : quantitative biosciences from nano to macro [Integr Biol (Camb)] 2014 Jan; Vol. 6 (1), pp. 76-89.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 101478378 Publication Model: Print Cited Medium: Internet ISSN: 1757-9708 (Electronic) Linking ISSN: 17579694 NLM ISO Abbreviation: Integr Biol (Camb) Subsets: MEDLINE
أسماء مطبوعة: Publication: 2019- : Oxford : Oxford University Press
Original Publication: Cambridge : RSC Publishing, c2009-c2018.
مواضيع طبية MeSH: Models, Biological*, Cell Cycle/*physiology , Cell Proliferation/*radiation effects , Epidermis/*physiology , Epithelial Cells/*physiology , Signal Transduction/*physiology, Animals ; Computer Simulation ; Epidermal Cells ; Epithelial Cells/cytology ; Humans ; Kinetics ; Swine
مستخلص: The surface of the skin is lined with several thin layers of epithelial cells that are maintained throughout a lifetime by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is very similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indices comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. This integrated model allows us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhances our understanding of the pathophysiological effects of ionizing radiation on the skin.
تواريخ الأحداث: Date Created: 20131126 Date Completed: 20140807 Latest Revision: 20181202
رمز التحديث: 20231215
DOI: 10.1039/c3ib40141c
PMID: 24270511
قاعدة البيانات: MEDLINE