دورية أكاديمية

Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.

التفاصيل البيبلوغرافية
العنوان: Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.
المؤلفون: Bosch-Navarro C; Department of Physics, University of Warwick, Coventry, CV4 7AL, UK. concepcion.bosch@uv.es., Laker ZP, Rourke JP, Wilson NR
المصدر: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2015 Nov 28; Vol. 17 (44), pp. 29628-36. Date of Electronic Publication: 2015 Oct 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 100888160 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1463-9084 (Electronic) Linking ISSN: 14639076 NLM ISO Abbreviation: Phys Chem Chem Phys Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge [England] : Royal Society of Chemistry, c1999-
مستخلص: The electrochemical activity of graphene is of fundamental importance to applications from energy storage to sensing, but has proved difficult to unambiguously determine due to the challenges innate to fabricating well defined graphene electrodes free from contamination. Here, we report the electrochemical activity of chemical vapour deposition (CVD) graphene grown on copper foil without further treatment, through appropriate choice of electrolyte. Fast electron transfer kinetics are observed for both inner and outer sphere redox couples with fully covered graphene on copper electrodes (k° = 0.014 ± 0.001 cm s(-1) or k° = 0.012 ± 0.001 cm s(-1) for potassium ferrocyanide(II) and hexaamineruthenium(III) chloride, respectively). Unlike highly oriented pyrolytic graphite electrodes, the electrochemical response of the graphene on copper electrodes is stable, with no apparent electrode fouling even with inner sphere redox couples, and reproducible independent of the time between growth and measurement. Comparison between fully covered electrodes, and partial coverage of graphene with varying graphene grain sizes (from roughly 50 μm to <10 μm) shows that in this instance the basal plane of graphene is electrochemically active. These CVD grown graphene on copper electrodes are quick, cheap and reproducible to make and hence provide a convenient platform for further investigation of graphene electrochemistry and the effect of covalent and non-covalent modification.
تواريخ الأحداث: Date Created: 20151020 Date Completed: 20160205 Latest Revision: 20151106
رمز التحديث: 20240829
DOI: 10.1039/c5cp04070a
PMID: 26477748
قاعدة البيانات: MEDLINE
الوصف
تدمد:1463-9084
DOI:10.1039/c5cp04070a