دورية أكاديمية

CPT-cGMP Is A New Ligand of Epithelial Sodium Channels.

التفاصيل البيبلوغرافية
العنوان: CPT-cGMP Is A New Ligand of Epithelial Sodium Channels.
المؤلفون: Ji HL; 1. Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA., Nie HG; 2. Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110001, China., Chang Y; 3. Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA., Lian Q; 4. Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China., Liu SL; 5. Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
المصدر: International journal of biological sciences [Int J Biol Sci] 2016 Jan 28; Vol. 12 (4), pp. 359-66. Date of Electronic Publication: 2016 Jan 28 (Print Publication: 2016).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.; Review
اللغة: English
بيانات الدورية: Publisher: Ivyspring International Country of Publication: Australia NLM ID: 101235568 Publication Model: eCollection Cited Medium: Internet ISSN: 1449-2288 (Electronic) Linking ISSN: 14492288 NLM ISO Abbreviation: Int J Biol Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Lake Haven, N.S.W., Australia : Ivyspring International, c2004-
مواضيع طبية MeSH: Cyclic GMP/*analogs & derivatives , Epithelial Sodium Channels/*metabolism, Animals ; Cyclic GMP/metabolism ; Humans ; Signal Transduction/physiology
مستخلص: Epithelial sodium channels (ENaC) are localized at the apical membrane of the epithelium, and are responsible for salt and fluid reabsorption. Renal ENaC takes up salt, thereby controlling salt content in serum. Loss-of-function ENaC mutations lead to low blood pressure due to salt-wasting, while gain-of-function mutations cause impaired sodium excretion and subsequent hypertension as well as hypokalemia. ENaC activity is regulated by intracellular and extracellular signals, including hormones, neurotransmitters, protein kinases, and small compounds. Cyclic nucleotides are broadly involved in stimulating protein kinase A and protein kinase G signaling pathways, and, surprisingly, also appear to have a role in regulating ENaC. Increasing evidence suggests that the cGMP analog, CPT-cGMP, activates αβγ-ENaC activity reversibly through an extracellular pathway in a dose-dependent manner. Furthermore, the parachlorophenylthio moiety and ribose 2'-hydroxy group of CPT-cGMP are essential for facilitating the opening of ENaC channels by this compound. Serving as an extracellular ligand, CPT-cGMP eliminates sodium self-inhibition, which is a novel mechanism for stimulating salt reabsorption in parallel to the traditional NO/cGMP/PKG signal pathway. In conclusion, ENaC may be a druggable target for CPT-cGMP, leading to treatments for kidney malfunctions in salt reabsorption.
References: J Physiol. 1981 Aug;317:49-66. (PMID: 7310741)
J Membr Biol. 1983;75(3):179-92. (PMID: 6313927)
Physiol Rev. 1988 Apr;68(2):309-73. (PMID: 2451832)
Nature. 1993 Feb 4;361(6411):467-70. (PMID: 8381523)
Cancer. 1994 Sep 1;74(5):1546-51. (PMID: 8062187)
J Biol Chem. 1996 Mar 1;271(9):4597-600. (PMID: 8617718)
Am J Physiol. 1996 Jan;270(1 Pt 1):C208-13. (PMID: 8772446)
Am J Physiol. 1997 Mar;272(3 Pt 1):C911-22. (PMID: 9124527)
Am J Physiol. 1998 Mar;274(3 Pt 1):L369-77. (PMID: 9530172)
Am J Physiol. 1998 Apr;274(4 Pt 1):L475-84. (PMID: 9575865)
J Membr Biol. 1999 Sep 15;171(2):117-26. (PMID: 10489424)
J Biol Chem. 2006 Mar 24;281(12):8233-41. (PMID: 16423824)
Mol Pharmacol. 2006 May;69(5):1755-62. (PMID: 16399849)
Am J Physiol Renal Physiol. 2006 Jun;290(6):F1488-96. (PMID: 16449353)
Respir Physiol Neurobiol. 2007 Dec 15;159(3):350-9. (PMID: 17604701)
Am J Respir Cell Mol Biol. 2008 Aug;39(2):150-62. (PMID: 18314534)
Cell Physiol Biochem. 2008;22(1-4):101-8. (PMID: 18769036)
J Membr Biol. 2008 Jun;223(3):127-39. (PMID: 18665318)
J Biol Chem. 2009 Jan 9;284(2):792-8. (PMID: 18990692)
Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L372-83. (PMID: 19112100)
Am J Respir Cell Mol Biol. 2009 May;40(5):588-600. (PMID: 18952569)
J Physiol. 2009 Jun 1;587(Pt 11):2663-76. (PMID: 19359370)
Annu Rev Physiol. 2009;71:403-23. (PMID: 18831683)
J Biol Chem. 2009 Oct 23;284(43):29320-5. (PMID: 19713212)
Am J Physiol Lung Cell Mol Physiol. 2000 Feb;278(2):L233-8. (PMID: 10666105)
J Heart Lung Transplant. 2000 Feb;19(2):173-8. (PMID: 10703694)
Curr Opin Cell Biol. 2000 Apr;12(2):217-21. (PMID: 10712918)
Pharmacol Rev. 2000 Sep;52(3):375-414. (PMID: 10977868)
J Biol Chem. 2001 Mar 16;276(11):8557-66. (PMID: 11113130)
J Physiol. 2001 Nov 1;536(Pt 3):693-701. (PMID: 11691865)
J Membr Biol. 2001 Dec 1;184(3):291-7. (PMID: 11891554)
Physiol Rev. 2002 Jul;82(3):569-600. (PMID: 12087129)
Physiol Rev. 2002 Jul;82(3):769-824. (PMID: 12087135)
J Gen Physiol. 2002 Aug;120(2):133-45. (PMID: 12149276)
J Appl Physiol (1985). 2002 Nov;93(5):1852-9. (PMID: 12381774)
J Physiol. 2002 Oct 15;544(Pt 2):537-48. (PMID: 12381825)
Ann Med. 2003;35(1):21-7. (PMID: 12693609)
J Biochem Mol Biol. 2003 May 31;36(3):299-304. (PMID: 12787486)
Pflugers Arch. 2003 Dec;447(3):316-20. (PMID: 14551775)
Nephron Physiol. 2004;96(2):p37-41. (PMID: 14988660)
J Biol Chem. 2004 Mar 12;279(11):9743-9. (PMID: 14701851)
Am J Respir Cell Mol Biol. 2004 May;30(5):720-8. (PMID: 14607816)
Am J Physiol Lung Cell Mol Physiol. 2004 Jun;286(6):L1268-74. (PMID: 14977628)
Pflugers Arch. 2015 Mar;467(3):531-42. (PMID: 25482671)
Am J Physiol Lung Cell Mol Physiol. 2015 Dec 1;309(11):L1229-38. (PMID: 26432872)
Biochim Biophys Acta. 1974 Jun 13;352(2):323-6. (PMID: 4546138)
Biochim Biophys Acta. 1979 Apr 4;552(2):341-5. (PMID: 444509)
Mol Endocrinol. 2007 May;21(5):1148-62. (PMID: 17341596)
J Comp Physiol B. 2007 Jul;177(5):503-8. (PMID: 17549497)
Gen Comp Endocrinol. 2007 Jun-Jul;152(2-3):286-8. (PMID: 17184780)
Curr Opin Nephrol Hypertens. 2007 Sep;16(5):444-50. (PMID: 17693760)
Am J Physiol Renal Physiol. 2010 Feb;298(2):F323-34. (PMID: 20007351)
Biochim Biophys Acta. 2011 Jul;1808(7):1818-26. (PMID: 21419751)
Am J Physiol Endocrinol Metab. 2011 Sep;301(3):E467-73. (PMID: 21653223)
Am J Respir Cell Mol Biol. 2011 Nov;45(5):1007-14. (PMID: 21562313)
Mol Cell Endocrinol. 2012 Mar 24;350(2):206-15. (PMID: 21664233)
Am J Physiol Renal Physiol. 2012 Apr 15;302(8):F917-27. (PMID: 22262484)
Am J Physiol Lung Cell Mol Physiol. 2012 Jun 15;302(12):L1262-72. (PMID: 22505667)
Am J Physiol Lung Cell Mol Physiol. 2012 Dec 15;303(12):L1013-26. (PMID: 22983350)
Am J Physiol Renal Physiol. 2013 Jan 15;304(2):F207-13. (PMID: 23136006)
Am J Physiol Renal Physiol. 2013 Apr 1;304(7):F930-7. (PMID: 23324181)
Curr Mol Pharmacol. 2013 Mar;6(1):44-9. (PMID: 23547934)
J Physiol Biochem. 2013 Sep;69(3):419-27. (PMID: 23184731)
Physiology (Bethesda). 2014 Jan;29(1):16-26. (PMID: 24382868)
J Am Soc Nephrol. 2014 Feb;25(2):250-9. (PMID: 24179170)
FEBS J. 2014 Apr;281(8):2097-111. (PMID: 24571549)
J Biol Chem. 2014 May 16;289(20):14351-9. (PMID: 24692558)
Am J Respir Crit Care Med. 2014 Sep 1;190(5):522-32. (PMID: 25029038)
J Biol Chem. 2014 Sep 12;289(37):25393-403. (PMID: 25070890)
Am J Physiol Lung Cell Mol Physiol. 2014 Oct 15;307(8):L609-17. (PMID: 25172911)
معلومات مُعتمدة: HL87017 United States HL NHLBI NIH HHS; R03 HL095435 United States HL NHLBI NIH HHS; 14GRNT20130034 United States AHA American Heart Association-American Stroke Association; R01 HL087017 United States HL NHLBI NIH HHS; HL095435 United States HL NHLBI NIH HHS
فهرسة مساهمة: Keywords: amiloride-sensitive sodium channel; cyclic guanosine nucleotides; lung edema.; molecular docking
المشرفين على المادة: 0 (CPT-cGMP)
0 (Epithelial Sodium Channels)
H2D2X058MU (Cyclic GMP)
تواريخ الأحداث: Date Created: 20160329 Date Completed: 20161219 Latest Revision: 20220129
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC4807156
DOI: 10.7150/ijbs.13764
PMID: 27019621
قاعدة البيانات: MEDLINE
الوصف
تدمد:1449-2288
DOI:10.7150/ijbs.13764