دورية أكاديمية

Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4.

التفاصيل البيبلوغرافية
العنوان: Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4.
المؤلفون: Barhanpurkar-Naik A; National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007, India. amrutamicrobio@yahoo.com., Mhaske ST; National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007, India., Pote ST; National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007, India., Singh K; National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007, India., Wani MR; National Centre for Cell Science, S. P. Pune University Campus, Pune, 411 007, India. mohanwani@nccs.res.in.
المصدر: Stem cell research & therapy [Stem Cell Res Ther] 2017 Jul 14; Vol. 8 (1), pp. 168. Date of Electronic Publication: 2017 Jul 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101527581 Publication Model: Electronic Cited Medium: Internet ISSN: 1757-6512 (Electronic) Linking ISSN: 17576512 NLM ISO Abbreviation: Stem Cell Res Ther Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central
مواضيع طبية MeSH: Cell Movement* , Gene Expression Regulation*, Interleukin-3/*metabolism , Mesenchymal Stem Cells/*metabolism , Receptors, CXCR4/*biosynthesis, Animals ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID
مستخلص: Background: Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions.
Methods: MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice.
Results: We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards subcutaneously implanted matrigel-releasing-SDF-1α in immunocompromised mice.
Conclusions: The present study demonstrates for the first time that IL-3 has an important role in enhancing the migration of human MSCs through regulation of the CXCR4/SDF-1α axis. These findings suggest a potential role of IL-3 in improving the efficacy of MSCs in regenerative cell therapy.
References: Exp Hematol. 2011 Jun;39(6):686-696.e4. (PMID: 21426925)
Stem Cells. 2015 Nov;33(11):3315-26. (PMID: 26148841)
FASEB J. 2013 Jul;27(7):2788-98. (PMID: 23568779)
Cell Stem Cell. 2009 Mar 6;4(3):206-16. (PMID: 19265660)
Biochem Biophys Res Commun. 2010 Mar 12;393(3):377-83. (PMID: 20138833)
Cell Death Differ. 2009 Oct;16(10):1332-43. (PMID: 19543237)
Stem Cells. 2015 Feb;33(2):456-67. (PMID: 25346537)
J Immunol. 2010 Aug 15;185(4):2261-72. (PMID: 20644169)
Crit Care Med. 2010 Oct;38(10 Suppl):S569-73. (PMID: 21164399)
FASEB J. 2007 Dec;21(14):3917-27. (PMID: 17622670)
Blood. 2004 Nov 1;104(9):2643-5. (PMID: 15251986)
Biochem Biophys Res Commun. 2012 Feb 24;418(4):669-75. (PMID: 22293197)
Stem Cells. 2014 Jun;32(6):1408-19. (PMID: 24578244)
Adv Exp Med Biol. 2012;741:290-313. (PMID: 22457117)
Stem Cell Rev Rep. 2014 Jun;10(3):351-75. (PMID: 24510581)
Nat Med. 2011 Nov 20;17(12):1594-601. (PMID: 22101767)
Biochimie. 2013 Dec;95(12):2229-34. (PMID: 23685070)
Mol Ther. 2008 Mar;16(3):571-9. (PMID: 18253156)
J Immunol. 2016 Jun 15;196(12):5024-35. (PMID: 27183574)
Blood. 2002 Oct 15;100(8):2778-86. (PMID: 12351385)
J Cell Biochem. 2013 Dec;114(12):2677-89. (PMID: 23794207)
Circ Res. 2008 Nov 21;103(11):1300-8. (PMID: 18948617)
Biochem Biophys Res Commun. 2013 Jun 28;436(2):265-70. (PMID: 23743204)
Stem Cells. 2007 Nov;25(11):2739-49. (PMID: 17656645)
J Biol Chem. 2015 Jan 23;290(4):1994-2006. (PMID: 25492872)
Stem Cells Transl Med. 2012 Jan;1(1):70-8. (PMID: 23197643)
Cardiovasc Res. 2008 Jan;77(1):134-42. (PMID: 18006467)
Transl Stroke Res. 2013 Feb;4(1):76-88. (PMID: 23914259)
Nat Immunol. 2014 Nov;15(11):1009-16. (PMID: 25329189)
Haematologica. 2007 Jul;92(7):897-904. (PMID: 17606439)
Cell Biol Int. 2016 Jul;40(7):730-41. (PMID: 25825165)
Stem Cells. 2007 Jul;25(7):1737-45. (PMID: 17395768)
Nat Med. 2012 Feb 05;18(3):456-62. (PMID: 22306732)
Am J Physiol Renal Physiol. 2013 Oct 1;305(7):F1064-73. (PMID: 23884141)
J Immunol. 2011 Feb 15;186(4):2262-72. (PMID: 21242512)
Front Med. 2011 Mar;5(1):33-9. (PMID: 21681672)
Cell Mol Immunol. 2012 Nov;9(6):473-81. (PMID: 23085948)
Int J Mol Med. 2013 Feb;31(2):407-15. (PMID: 23228965)
Circulation. 2003 Aug 19;108(7):863-8. (PMID: 12900340)
Am J Stem Cells. 2016 May 15;5(1):1-10. (PMID: 27335697)
Stem Cells. 2011 Oct;29(10):1549-58. (PMID: 21898680)
Blood. 2005 Jul 15;106(2):419-27. (PMID: 15784733)
J Immunol. 2015 Dec 1;195(11):5136-48. (PMID: 26538398)
Mol Ther. 2009 Nov;17(11):1979-87. (PMID: 19603006)
Stem Cells. 2004;22(3):415-27. (PMID: 15153618)
Cell Death Differ. 2014 Feb;21(2):216-25. (PMID: 24185619)
Nat Rev Rheumatol. 2009 Jul;5(7):392-9. (PMID: 19568253)
Blood. 2011 Dec 15;118(25):e184-91. (PMID: 22034631)
DNA Cell Biol. 2016 May;35(5):241-8. (PMID: 26788981)
Arthritis Rheum. 2009 Mar;60(3):813-23. (PMID: 19248097)
Stem Cells. 2009 Aug;27(8):1887-98. (PMID: 19544445)
Stem Cells. 2015 Sep;33(9):2850-63. (PMID: 26037953)
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2258-63. (PMID: 21257905)
Blood. 2003 Apr 15;101(8):2999-3001. (PMID: 12480709)
Circulation. 2005 Sep 6;112(10):1451-61. (PMID: 16129797)
Stem Cells. 2006 Apr;24(4):1030-41. (PMID: 16253981)
J Immunol. 2009 Jan 1;182(1):361-70. (PMID: 19109167)
Nat Rev Immunol. 2008 Sep;8(9):726-36. (PMID: 19172693)
Stem Cells Int. 2014;2014:939275. (PMID: 24672555)
Theranostics. 2016 May 23;6(8):1176-89. (PMID: 27279910)
فهرسة مساهمة: Keywords: CXCR4; Cell migration; Interleukin-3; Mesenchymal stem cells; SDF-1α
المشرفين على المادة: 0 (CXCR4 protein, human)
0 (IL3 protein, human)
0 (Interleukin-3)
0 (Receptors, CXCR4)
تواريخ الأحداث: Date Created: 20170715 Date Completed: 20180409 Latest Revision: 20240326
رمز التحديث: 20240326
مُعرف محوري في PubMed: PMC5512829
DOI: 10.1186/s13287-017-0618-y
PMID: 28705238
قاعدة البيانات: MEDLINE