دورية أكاديمية

Prospective motion correction using coil-mounted cameras: Cross-calibration considerations.

التفاصيل البيبلوغرافية
العنوان: Prospective motion correction using coil-mounted cameras: Cross-calibration considerations.
المؤلفون: Maclaren J; Department of Radiology, Stanford University, Stanford, California, USA., Aksoy M; Department of Radiology, Stanford University, Stanford, California, USA., Ooi MB; Department of Radiology, Stanford University, Stanford, California, USA.; Philips Healthcare, Gainesville, Florida, USA., Zahneisen B; Department of Radiology, Stanford University, Stanford, California, USA., Bammer R; Department of Radiology, Stanford University, Stanford, California, USA.
المصدر: Magnetic resonance in medicine [Magn Reson Med] 2018 Apr; Vol. 79 (4), pp. 1911-1921. Date of Electronic Publication: 2017 Jul 19.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 8505245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2594 (Electronic) Linking ISSN: 07403194 NLM ISO Abbreviation: Magn Reson Med Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
مواضيع طبية MeSH: Cerebrovascular Circulation* , Optical Devices*, Adenoma/*diagnostic imaging , Magnetic Resonance Imaging/*methods , Neuroimaging/*methods , Pituitary Neoplasms/*diagnostic imaging, Algorithms ; Brain/diagnostic imaging ; Calibration ; Computer Simulation ; Equipment Design ; Female ; Head/diagnostic imaging ; Humans ; Imaging, Three-Dimensional ; Male ; Motion ; Patient Positioning ; Reproducibility of Results ; Software ; Stress, Mechanical
مستخلص: Purpose: Optical prospective motion correction substantially reduces sensitivity to motion in neuroimaging of human subjects. However, a major barrier to clinical deployment has been the time-consuming cross-calibration between the camera and MRI scanner reference frames. This work addresses this challenge.
Methods: A single camera was mounted onto the head coil for tracking head motion. Two new methods were developed: (1) a rapid calibration method for camera-to-scanner cross-calibration using a custom-made tool incorporating wireless active markers, and (2) a calibration adjustment method to compensate for table motion between scans. Both methods were tested at 1.5T and 3T in vivo. Simulations were performed to determine the required mechanical tolerance for repositioning of the camera.
Results: The rapid calibration method is completed in a short (<30 s) scan, which is carried out only once per installation. The calibration adjustment method requires no extra scan time and runs automatically whenever the system is used. The mechanical tolerance analysis indicates that most motion (90% reduction in voxel displacement) could be corrected even with far larger camera repositioning errors than are observed in practice.
Conclusion: The methods presented here allow calibration of sufficient quality to be carried out and maintained with no additional technologist workload. Magn Reson Med 79:1911-1921, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
(© 2017 International Society for Magnetic Resonance in Medicine.)
References: Magn Reson Med. 2011 Jun;65(6):1724-32. (PMID: 21590805)
Magn Reson Med. 2011 Aug;66(2):366-78. (PMID: 21432898)
Neuroimage. 2015 Jun;113:1-12. (PMID: 25783205)
J Am Coll Radiol. 2015 Jul;12(7):689-95. (PMID: 25963225)
PLoS One. 2012;7(11):e48088. (PMID: 23144848)
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):259-66. (PMID: 20879239)
Magn Reson Med. 2013 Sep;70(3):639-47. (PMID: 23813444)
Magn Reson Med. 1999 Nov;42(5):963-9. (PMID: 10542356)
Magn Reson Med. 2014 Apr;71(4):1489-500. (PMID: 23788117)
Magn Reson Med. 2014 Aug;72(2):381-8. (PMID: 24123287)
J Magn Reson Imaging. 2015 Oct;42(4):887-901. (PMID: 25630632)
Magn Reson Med. 2015 Aug;74(2):571-7. (PMID: 25982242)
Neuroimage. 2006 Jul 1;31(3):1038-50. (PMID: 16600642)
Magn Reson Med. 2010 Jan;63(1):162-70. (PMID: 19918892)
Neuroimage. 2014 Jan 1;84:124-32. (PMID: 23954484)
Magn Reson Med. 2010 Jan;63(1):91-105. (PMID: 20027635)
Magn Reson Med. 2016 Feb;75(2):810-6. (PMID: 25761550)
Magn Reson Med. 2009 Oct;62(4):924-34. (PMID: 19526503)
MAGMA. 2006 May;19(2):55-61. (PMID: 16779560)
Magn Reson Med. 2013 Mar 1;69(3):621-36. (PMID: 22570274)
MAGMA. 2012 Dec;25(6):443-53. (PMID: 22695771)
Magn Reson Med. 2012 Jun;67(6):1506-14. (PMID: 22135041)
Magn Reson Med. 2012 Feb;67(2):326-38. (PMID: 22161984)
PLoS One. 2015 Jul 30;10(7):e0133921. (PMID: 26226146)
معلومات مُعتمدة: P41 RR009784 United States RR NCRR NIH HHS; R01 EB011654 United States EB NIBIB NIH HHS; R21 EB006860 United States EB NIBIB NIH HHS; R21 EB017616 United States EB NIBIB NIH HHS
فهرسة مساهمة: Keywords: cross-calibration; in-bore camera; optical adaptive motion correction; prospective motion correction; wireless active markers
تواريخ الأحداث: Date Created: 20170720 Date Completed: 20190514 Latest Revision: 20190514
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC5899426
DOI: 10.1002/mrm.26838
PMID: 28722314
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-2594
DOI:10.1002/mrm.26838