دورية أكاديمية

Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor.

التفاصيل البيبلوغرافية
العنوان: Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor.
المؤلفون: Nguyen GD; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Tsai HZ; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Omrani AA; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Marangoni T; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA., Wu M; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA., Rizzo DJ; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Rodgers GF; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Cloke RR; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA., Durr RA; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA., Sakai Y; Center for Computational Materials, Institute for Computational Engineering and Sciences, Departments of Physics and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA., Liou F; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Aikawa AS; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA., Chelikowsky JR; Center for Computational Materials, Institute for Computational Engineering and Sciences, Departments of Physics and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA., Louie SG; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA., Fischer FR; Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.; Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA., Crommie MF; Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.; Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
المصدر: Nature nanotechnology [Nat Nanotechnol] 2017 Nov; Vol. 12 (11), pp. 1077-1082. Date of Electronic Publication: 2017 Sep 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101283273 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-3395 (Electronic) Linking ISSN: 17483387 NLM ISO Abbreviation: Nat Nanotechnol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group, 2006-
مستخلص: The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.
References: Nat Commun. 2015 Aug 25;6:8098. (PMID: 26302943)
ACS Nano. 2013 Jul 23;7(7):6123-8. (PMID: 23746141)
J Phys Condens Matter. 2009 Sep 30;21(39):395502. (PMID: 21832390)
Nano Lett. 2011 Aug 10;11(8):3245-50. (PMID: 21732625)
Phys Rev B Condens Matter. 1991 Jan 15;43(3):1993-2006. (PMID: 9997467)
Nature. 2010 Jul 22;466(7305):470-3. (PMID: 20651687)
Science. 2009 Aug 28;325(5944):1110-4. (PMID: 19713523)
J Am Chem Soc. 2015 Jul 22;137(28):8872-5. (PMID: 26153349)
Nat Mater. 2014 Dec;13(12):1091-5. (PMID: 25173579)
Chemistry. 2016 Sep 5;22(37):13037-40. (PMID: 27458978)
Nat Nanotechnol. 2015 Feb;10(2):156-60. (PMID: 25581888)
Science. 2014 May 23;344(6186):885-8. (PMID: 24855265)
Nature. 2016 Oct 20;538(7625):364-367. (PMID: 27698415)
Nano Lett. 2015 Sep 9;15(9):5770-7. (PMID: 26258628)
Phys Rev Lett. 2007 Nov 2;99(18):186801. (PMID: 17995426)
Nature. 2000 Nov 30;408(6812):541-8. (PMID: 11117734)
Nano Lett. 2009 Dec;9(12):3963-7. (PMID: 19904920)
Angew Chem Int Ed Engl. 2013 Apr 15;52(16):4422-5. (PMID: 23512734)
Nat Nanotechnol. 2014 Nov;9(11):896-900. (PMID: 25194948)
Science. 2013 Jun 21;340(6139):1434-7. (PMID: 23722428)
Nano Lett. 2016 Apr 13;16(4):2603-7. (PMID: 26964012)
Nature. 2006 Nov 16;444(7117):347-9. (PMID: 17108960)
تواريخ الأحداث: Date Created: 20170926 Latest Revision: 20191120
رمز التحديث: 20231215
DOI: 10.1038/nnano.2017.155
PMID: 28945240
قاعدة البيانات: MEDLINE