دورية أكاديمية

Glycoengineering of Mammalian Expression Systems on a Cellular Level.

التفاصيل البيبلوغرافية
العنوان: Glycoengineering of Mammalian Expression Systems on a Cellular Level.
المؤلفون: Heffner KM; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA., Wang Q; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA., Hizal DB; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA., Can Ö; Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey., Betenbaugh MJ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. beten@jhu.edu.
المصدر: Advances in biochemical engineering/biotechnology [Adv Biochem Eng Biotechnol] 2021; Vol. 175, pp. 37-69.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 8307733 Publication Model: Print Cited Medium: Print ISSN: 0724-6145 (Print) Linking ISSN: 07246145 NLM ISO Abbreviation: Adv Biochem Eng Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: Heidelberg : Springer Verlag
Original Publication: Berlin ; New York : Springer-Verlag, [1983-
مواضيع طبية MeSH: Glycoproteins*/genetics , Glycoproteins*/metabolism, Animals ; CHO Cells ; Cricetinae ; Cricetulus ; Glycosylation ; Recombinant Proteins/genetics
مستخلص: Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
(© 2018. Springer International Publishing AG.)
References: Ghaderi D et al (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 28:147–175. (PMID: 2261648610.5661/bger-28-147)
Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949. (PMID: 1949434710.1093/glycob/cwp07919494347)
Lepenies B, Seeberger PH (2014) Simply better glycoproteins. Nat Biotechnol 32(5):443–445. (PMID: 2481151610.1038/nbt.289324811516)
Aggarwal RS (2014) What’s fueling the biotech engine-2012 to 2013. Nat Biotechnol 32(1):32–39. (PMID: 2440692610.1038/nbt.279424406926)
Jiménez D et al (2005) Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs). J Biol Chem 280(7):5854–5861. (PMID: 1554528010.1074/jbc.M41210420015545280)
Agrawal P et al (2014) Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc Natl Acad Sci 111(11):4338–4343. (PMID: 24591635396410410.1073/pnas.1321524111)
Palomares LA, Estrada-Mondaca S, Ramirez OT (2004) Production of recombinant proteins: challenges and solutions. Methods Mol Biol 267:15–52. (PMID: 1526941415269414)
Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252. (PMID: 1703366510.1038/nbt125217033665)
Gavel Y, Vonheijne G (1990) Sequence differences between glycosylated and nonglycosylated Asn-X-Thr Ser acceptor sites – implications for protein engineering. Protein Eng 3(5):433–442. (PMID: 2349213752908210.1093/protein/3.5.433)
Stavenhagen K et al (2013) Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J Mass Spectrom 48(6):i. (PMID: 2377610210.1002/jms.318923776102)
Wang Q et al (2017) Glycoengineering of CHO cells to improve product quality. Methods Mol Biol 1603:25–44. (PMID: 2849312110.1007/978-1-4939-6972-2_228493121)
Varki A, Schauer R (2009) Sialic acids. In: Varki A et al (eds) Essentials of glycobiology. Cold Spring Harbor, New York.
Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833(11):2430–2437. (PMID: 2358330510.1016/j.bbamcr.2013.04.00123583305)
Aebi M et al (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35(2):74–82. (PMID: 1985345810.1016/j.tibs.2009.10.00119853458)
Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96(4):885–894. (PMID: 23053101708010710.1007/s00253-012-4451-z)
Swiech K, Picanco-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84(1):147–153. (PMID: 2258029210.1016/j.pep.2012.04.02322580292)
Padler-Karavani V, Varki A (2011) Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation 18(1):1–5. (PMID: 21342282309873910.1111/j.1399-3089.2011.00622.x)
Bosques CJ et al (2015) Chinese hamster ovary cells can produce galactose-alpha-1, 3-galactose antigens on proteins (vol 28, pg 1153, 2010). Nat Biotechnol 16(10):23849–23866.
Muchmore EA et al (1989) Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J Biol Chem 264(34):20216–20223. (PMID: 268497310.1016/S0021-9258(19)47049-X2684973)
Chung CH et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109–1117. (PMID: 18337601236112910.1056/NEJMoa074943)
Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112. (PMID: 2500567810.1016/j.copbio.2014.06.010)
Croset A et al (2012) Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol 161(3):336–348. (PMID: 2281440510.1016/j.jbiotec.2012.06.03822814405)
Zhao Y et al (2008) Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J 275(9):1939–1948. (PMID: 1838438310.1111/j.1742-4658.2008.06346.x18384383)
Raju TS, Jordan RE (2012) Galactosylation variations in marketed therapeutic antibodies. MAbs 4(3):385–391. (PMID: 22531450335548110.4161/mabs.19868)
Sareneva T et al (1995) N-glycosylation of human interferon-gamma – glycans at Asn-25 are critical for protease resistance. Biochem J 308:9–14. (PMID: 7755594113683610.1042/bj3080009)
Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for genetic engineering. Trends Biotechnol 15(1):26–32. (PMID: 903299010.1016/S0167-7799(96)10062-7)
Spearman M, Butler M (2015) Glycosylation in cell culture. Anim Cell Cult 9:237–258. (PMID: 10.1007/978-3-319-10320-4_9)
Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24(1):9–21. (PMID: 20055529280547510.2165/11530550-000000000-00000)
Wright A et al (1991) Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J 10(10):2717–2723. (PMID: 171725445297910.1002/j.1460-2075.1991.tb07819.x)
Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102(2):439–469. (PMID: 1184125010.1021/cr000407m11841250)
Harduin-Lepers A et al (2001) The human sialyltransferase family. Biochimie 83(8):727–737. (PMID: 1153020410.1016/S0300-9084(01)01301-311530204)
Wang Q et al (2015) Strategies for engineering protein N-glycosylation pathways in mammalian cells. Methods Mol Biol 1321:287–305. (PMID: 2608223010.1007/978-1-4939-2760-9_2026082230)
Chung CY et al (2015) Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the alpha 2,3 sialylation linkage of mammalian glycoproteins. Biochem Biophys Res Commun 463(3):211–215. (PMID: 2599838910.1016/j.bbrc.2015.05.02325998389)
Stencel-Baerenwald JE et al (2014) The sweet spot: defining virus–sialic acid interactions. Nat Rev Microbiol 12:739. (PMID: 25263223479116710.1038/nrmicro3346)
Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–554. (PMID: 628792010.1146/annurev.bi.51.070182.002531)
Cole ES et al (1993) In vivo clearance of tissue plasminogen-activator – the complex role of sites of glycosylation and level of sialylation. Fibrinolysis 7(1):15–22. (PMID: 10.1016/0268-9499(93)90050-6)
Kanda Y et al (2007) Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol 130(3):300–310. (PMID: 1755995910.1016/j.jbiotec.2007.04.025)
Shields RL et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcgammaRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740. (PMID: 1198632110.1074/jbc.M202069200)
Liu J et al (2015) O-glycan repertoires on a mucin-type reporter protein expressed in CHO cell pools transiently transfected with O-glycan core enzyme cDNAs. J Biotechnol 199:77–89. (PMID: 2572218610.1016/j.jbiotec.2015.02.01725722186)
Chung S et al (2012) Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcgamma receptor binding and antibody-dependent cell-mediated cytotoxicity activities. MAbs 4(3):326–340. (PMID: 22531441335549110.4161/mabs.19941)
Kanda Y et al (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17(1):104–118. (PMID: 1701231010.1093/glycob/cwl05717012310)
Beuger V et al (2009) Short-hairpin-RNA-mediated silencing of fucosyltransferase 8 in Chinese-hamster ovary cells for the production of antibodies with enhanced antibody immune effector function. Biotechnol Appl Biochem 53(Pt 1):31–37. (PMID: 1903215410.1042/BA2008022019032154)
Imai-Nishiya H et al (2007) Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 7(1):84. (PMID: 18047682221601310.1186/1472-6750-7-84)
Yamane-Ohnuki N et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622. (PMID: 1535205910.1002/bit.20151)
Mori K et al (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–908. (PMID: 1551516810.1002/bit.2032615515168)
Malphettes L et al (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106(5):774–783. (PMID: 2056461410.1002/bit.2275120564614)
Sealover NR et al (2013) Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)—mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167(1):24–32. (PMID: 2377785810.1016/j.jbiotec.2013.06.006)
Sakuma T et al (2015) Homologous recombination-independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int J Mol Sci 16(10):23849. (PMID: 26473830463272810.3390/ijms161023849)
Ronda C et al (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616. (PMID: 248277822482778210.1002/bit.25233)
Grav LM et al (2015) One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J 10(9):1446–1456. (PMID: 2586457410.1002/biot.20150002725864574)
Chan KF et al (2016) Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnol J 11(3):399–414. (PMID: 2647100410.1002/biot.20150033126471004)
Ferrara C et al (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861. (PMID: 1643540010.1002/bit.20777)
Patnaik SK, Stanley P (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol 416:159–182. (PMID: 1711386610.1016/S0076-6879(06)16011-517113866)
Tong C et al (2011) Generating gene knockout rats by homologous recombination in embryonic stem cells. Nat Protoc 6(6):827–844. (PMID: 2163720210.1038/nprot.2011.33821637202)
Chan KF, Goh JSY, Song Z (2014) Improving sialylation of recombinant biologics for enhanced therapeutic efficacy. Pharm Bioprocess 2(5):363–366. (PMID: 10.4155/pbp.14.44)
Goh JS et al (2010) RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metab Eng 12(4):360–368. (PMID: 2034641010.1016/j.ymben.2010.03.00220346410)
Iskratsch T et al (2009) Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 386(2):133–146. (PMID: 1912399910.1016/j.ab.2008.12.00519123999)
Goh JS et al (2014) Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells. Bioengineered 5(4):269–273. (PMID: 24911584414339810.4161/bioe.29490)
Goh JS et al (2014) Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J 9(1):100–109. (PMID: 2416678010.1002/biot.20130030124166780)
Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. (PMID: 23664777369460110.1016/j.tibtech.2013.04.004)
Cristea S et al (2013) In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng 110(3):871–880. (PMID: 2304211910.1002/bit.2473323042119)
Louie S et al (2016) FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Biotechnol Bioeng 114(3):632–644. (PMID: 2766693910.1002/bit.2618827666939)
Davies J et al (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294. (PMID: 1141085310.1002/bit.1119)
Fukuta K et al (2000) Control of bisecting GlcNAc addition to N-linked sugar chains. J Biol Chem 275(31):23456–23461. (PMID: 1081657910.1074/jbc.M00269320010816579)
Fukuta K et al (2000) Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj J 17(12):895–904. (PMID: 1151181410.1023/A:101097743106111511814)
Fukuta K et al (2000) Remodeling of sugar chain structures of human interferon-gamma. Glycobiology 10(4):421–430. (PMID: 1076483010.1093/glycob/10.4.42110764830)
Reinl T et al (2013) Golgi engineering of CHO cells by targeted integration of glycosyltransferases leads to the expression of novel Asn-linked oligosaccharide structures at secretory glycoproteins. BMC Proc 7(6):P84. (PMID: 398082210.1186/1753-6561-7-S6-P84)
Demetriou M et al (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409(6821):733–739. (PMID: 1121786410.1038/3505558211217864)
Misaizu T et al (1995) Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86(11):4097–4104. (PMID: 749276610.1182/blood.V86.11.4097.bloodjournal861140977492766)
Park SS et al (2012) Effective correction of experimental errors in quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC). J Proteome 75(12):3720–3732. (PMID: 10.1016/j.jprot.2012.04.035)
Yin B et al (2015) Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol Bioeng 112(11):2343–2351. (PMID: 2615450510.1002/bit.25650)
Bierhuizen MF, Fukuda M (1992) Expression cloning of cDNA encoding UDP-GlcNAc:Gal beta 1-3-GalNAc-R (GlcNAc to GalNAc) beta 1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci U S A 89(19):9326–9330. (PMID: 13290935011910.1073/pnas.89.19.9326)
Prati EG et al (2000) Engineering of coordinated up- and down-regulation of two glycosyltransferases of the O-glycosylation pathway in Chinese hamster ovary (CHO) cells. Biotechnol Bioeng 68(3):239–244. (PMID: 1074519110.1002/(SICI)1097-0290(20000505)68:3<239::AID-BIT1>3.0.CO;2-710745191)
Minch SL, Kallio PT, Bailey JE (1995) Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with alpha(2,6)-sialyltransferase contains NeuAc alpha(2,6)Gal beta(1,4)Glc-N-AcR linkages. Biotechnol Prog 11(3):348–351. (PMID: 761940410.1021/bp00033a0157619404)
Krzewinski-Recchi MA et al (2003) Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II. Eur J Biochem 270(5):950–961. (PMID: 1260332810.1046/j.1432-1033.2003.03458.x12603328)
Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264(23):13848–13855. (PMID: 266827410.1016/S0021-9258(18)80078-32668274)
Damiani R et al (2009) Stable expression of a human-like sialylated recombinant thyrotropin in a Chinese hamster ovary cell line expressing alpha2,6-sialyltransferase. Protein Expr Purif 67(1):7–14. (PMID: 1936663210.1016/j.pep.2009.04.00519366632)
Weikert S et al (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121. (PMID: 1054592110.1038/1510410545921)
Raymond C et al (2015) Production of IgGs with a human-like sialylation in CHO cells. BMC Proc 9(Suppl 9):O3. (PMID: 468534410.1186/1753-6561-9-S9-O3)
Jeong YT et al (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18(12):1945–1952. (PMID: 1913169819131698)
Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93(5):1005–1016. (PMID: 1643289510.1002/bit.2081516432895)
Jeong YT et al (2009) Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells. Biotechnol Appl Biochem 52(Pt 4):283–291. (PMID: 1859051510.1042/BA2008004418590515)
Son YD et al (2011) Enhanced sialylation of recombinant human erythropoietin in Chinese hamster ovary cells by combinatorial engineering of selected genes. Glycobiology 21(8):1019–1028. (PMID: 2143623810.1093/glycob/cwr03421436238)
Burg M, Muthing J (2001) Characterization of cytosolic sialidase from Chinese hamster ovary cells: part I: cloning and expression of soluble sialidase in Escherichia coli. Carbohydr Res 330(3):335–346. (PMID: 1127081210.1016/S0008-6215(00)00294-911270812)
Ngantung FA et al (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol Bioeng 95(1):106–119. (PMID: 1667341510.1002/bit.2099716673415)
Munzert E et al (1997) Production of recombinant human antithrombin III on 20-L bioreactor scale: correlation of supernatant neuraminidase activity, desialylation, and decrease of biological activity of recombinant glycoprotein. Biotechnol Bioeng 56(4):441–448. (PMID: 1864224610.1002/(SICI)1097-0290(19971120)56:4<441::AID-BIT9>3.0.CO;2-O18642246)
Ferrari J et al (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60(5):589–595. (PMID: 1009946710.1002/(SICI)1097-0290(19981205)60:5<589::AID-BIT9>3.0.CO;2-K10099467)
Van Dyk DD et al (2003) Identification of cellular changes associated with increased production of human growth hormone in a recombinant Chinese hamster ovary cell line. Proteomics 3(2):147–156. (PMID: 1260180710.1002/pmic.20039002312601807)
Zhang M et al (2010) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105(6):1094–1105. (PMID: 2001413920014139)
Tousi F, Hancock WS, Hincapie M (2011) Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Anal Methods 3(1):20–32. (PMID: 3293810610.1039/C0AY00413H32938106)
Zhang Y, Yin H, Lu H (2012) Recent progress in quantitative glycoproteomics. Glycoconj J 29(5–6):249–258. (PMID: 2269956510.1007/s10719-012-9398-x22699565)
Ito S, Hayama K, Hirabayashi J (2009) Enrichment strategies for glycopeptides. Methods Mol Biol 534:195–203. (PMID: 1927755119277551)
Hua S, An HJ (2012) Glycoscience aids in biomarker discovery. BMB Rep 45(6):323–330. (PMID: 2273221610.5483/BMBRep.2012.45.6.13222732216)
Furukawa J-i, Fujitani N, Shinohara Y (2013) Recent advances in cellular glycomic analyses. Biomol Ther 3(1):198.
Bennun SV et al (2013) Integration of the transcriptome and glycome for identification of glycan cell signatures. PLoS Comput Biol 9(1):e1002813. (PMID: 23326219354207310.1371/journal.pcbi.1002813)
Ranzinger R et al (2011) GlycomeDB—a unified database for carbohydrate structures. Nucleic Acids Res 39(Database issue):D373–D376. (PMID: 2104505610.1093/nar/gkq101421045056)
von der Lieth CW et al (2011) EUROCarbDB: an open-access platform for glycoinformatics. Glycobiology 21(4):493–502. (PMID: 2110656110.1093/glycob/cwq18821106561)
Akune Y et al (2010) The RINGS resource for glycome informatics analysis and data mining on the web. OMICS 14(4):475–486. (PMID: 2072680310.1089/omi.2009.012920726803)
Lutteke T et al (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16(5):71R–81R. (PMID: 1623949510.1093/glycob/cwj04916239495)
Krambeck FJ et al (2009) A mathematical model to derive N-glycan structures and cellular enzyme activities from mass spectrometric data. Glycobiology 19(11):1163–1175. (PMID: 19506293275757310.1093/glycob/cwp081)
Yang S, Zhang H (2014) Glycomic analysis of glycans released from glycoproteins using chemical immobilization and mass spectrometry. Curr Protoc Chem Biol 6(3):191–208. (PMID: 25205566417195910.1002/9780470559277.ch140085)
Tian Y, Zhang H (2010) Glycoproteomics and clinical applications. Proteomics Clin Appl 4(2):124–132. (PMID: 2113703810.1002/prca.200900161)
Megger DA et al (2013) Label-free quantification in clinical proteomics. Biochim Biophys Acta 1834(8):1581–1590. (PMID: 2356790610.1016/j.bbapap.2013.04.00123567906)
Kashyap MK et al (2010) SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol Ther 10(8):796–810. (PMID: 20686364309391610.4161/cbt.10.8.12914)
Tian Y, Bova GS, Zhang H (2011) Quantitative glycoproteomic analysis of optimal cutting temperature-embedded frozen tissues identifying glycoproteins associated with aggressive prostate cancer. Anal Chem 83(18):7013–7019. (PMID: 21780747428577610.1021/ac200815q)
Raso C et al (2012) Characterization of breast cancer interstitial fluids by TmT labeling, LTQ-Orbitrap Velos mass spectrometry, and pathway analysis. J Proteome Res 11(6):3199–3210. (PMID: 2256370210.1021/pr201234722563702)
Zhang H et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21(6):660–666. (PMID: 1275451910.1038/nbt82712754519)
Baycin-Hizal D et al (2012) Proteomic analysis of Chinese hamster ovary cells. J Proteome Res 11(11):5265–5276. (PMID: 22971049377272110.1021/pr300476w)
Yang S et al (2015) QUANTITY: an isobaric tag for quantitative glycomics. Sci Rep 5:17585. (PMID: 26616285466346910.1038/srep17585)
Sun S et al (2016) Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat Biotechnol 34(1):84–88. (PMID: 2657110110.1038/nbt.340326571101)
Toghi Eshghi S et al (2015) GPQuest: a spectral library matching algorithm for site-specific assignment of tandem mass spectra to intact N-glycopeptides. Anal Chem 87(10):5181–5188. (PMID: 2594589610.1021/acs.analchem.5b0002425945896)
Furukawa J et al (2015) Quantitative O-glycomics by microwave-assisted beta-elimination in the presence of pyrazolone analogues. Anal Chem 87(15):7524–7528. (PMID: 2613264010.1021/acs.analchem.5b0215526132640)
Lauc G et al (2010) Genomics meets glycomics—the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet 6(12):e1001256. (PMID: 21203500300967810.1371/journal.pgen.1001256)
Huffman JE et al (2011) Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within the human plasma N-glycome of 3533 European adults. Hum Mol Genet 20(24):5000–5011. (PMID: 2190851910.1093/hmg/ddr41421908519)
Zoldos V et al (2012) Epigenetic silencing of HNF1A associates with changes in the composition of the human plasma N-glycome. Epigenetics 7(2):164–172. (PMID: 22395466333591010.4161/epi.7.2.18918)
Saldova R et al (2011) 5-AZA-2′-deoxycytidine induced demethylation influences N-glycosylation of secreted glycoproteins in ovarian cancer. Epigenetics 6(11):1362–1372. (PMID: 2208611510.4161/epi.6.11.1797722086115)
Nairn AV et al (2012) Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis. J Biol Chem 287(45):37835–37856. (PMID: 22988249348805710.1074/jbc.M112.405233)
Tan Z et al (2014) Altered N-glycan expression profile in epithelial-to-mesenchymal transition of NMuMG cells revealed by an integrated strategy using mass spectrometry and glycogene and lectin microarray analysis. J Proteome Res 13(6):2783–2795. (PMID: 2472454510.1021/pr401185z24724545)
Yang Z et al (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33(8):842–844. (PMID: 2619231910.1038/nbt.328026192319)
Chenu S et al (2003) Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy. Biochim Biophys Acta 1622(2):133–144. (PMID: 1288095110.1016/S0304-4165(03)00137-512880951)
Zhang X, Lok SH, Kon OL (1998) Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. Biochim Biophys Acta 1425(3):441–452. (PMID: 983820810.1016/S0304-4165(98)00095-69838208)
فهرسة مساهمة: Keywords: CHO; CRISPR/Cas9; Chinese hamster ovary; Fucosylation; Glycoengineering; Glycomics; Glycoproteomics; Mammalian expression systems; N-linked glycosylation; O-linked glycosylation; Sialylation; TALEN; ZFN
المشرفين على المادة: 0 (Glycoproteins)
0 (Recombinant Proteins)
تواريخ الأحداث: Date Created: 20180314 Date Completed: 20210728 Latest Revision: 20210728
رمز التحديث: 20221213
DOI: 10.1007/10_2017_57
PMID: 29532110
قاعدة البيانات: MEDLINE
الوصف
تدمد:0724-6145
DOI:10.1007/10_2017_57