دورية أكاديمية

Striking the right balance of intermolecular coupling for high-efficiency singlet fission.

التفاصيل البيبلوغرافية
العنوان: Striking the right balance of intermolecular coupling for high-efficiency singlet fission.
المؤلفون: Pensack RD; Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA . Email: gscholes@princeton.edu., Tilley AJ; Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada., Grieco C; Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA., Purdum GE; Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA., Ostroumov EE; Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA . Email: gscholes@princeton.edu., Granger DB; Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , USA . Email: anthony@uky.edu., Oblinsky DG; Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA . Email: gscholes@princeton.edu., Dean JC; Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA . Email: gscholes@princeton.edu., Doucette GS; Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA., Asbury JB; Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA., Loo YL; Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA.; Andlinger Center for Energy and the Environment , Princeton University , Princeton , New Jersey 08544 , USA., Seferos DS; Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada.; Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada., Anthony JE; Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , USA . Email: anthony@uky.edu., Scholes GD; Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA . Email: gscholes@princeton.edu.
المصدر: Chemical science [Chem Sci] 2018 Jun 01; Vol. 9 (29), pp. 6240-6259. Date of Electronic Publication: 2018 Jun 01 (Print Publication: 2018).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101545951 Publication Model: eCollection Cited Medium: Print ISSN: 2041-6520 (Print) Linking ISSN: 20416520 NLM ISO Abbreviation: Chem Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : Royal Society of Chemistry, [2010]-
مستخلص: Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet-triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields.
References: Phys Chem Chem Phys. 2017 Aug 30;19(34):23162-23175. (PMID: 28820218)
J Am Chem Soc. 2015 Jan 14;137(1):165-72. (PMID: 25478747)
J Am Chem Soc. 2015 Jun 3;137(21):6790-803. (PMID: 25946670)
J Am Chem Soc. 2006 Dec 20;128(50):16376-83. (PMID: 17165794)
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7656-61. (PMID: 26060309)
Chem Sci. 2016 Feb 1;7(2):1185-1191. (PMID: 29910873)
J Phys Chem A. 2013 Oct 24;117(42):10824-38. (PMID: 24053123)
Nat Commun. 2015 Oct 12;6:8602. (PMID: 26456368)
J Phys Chem Lett. 2017 Dec 7;8(23):5943-5948. (PMID: 29164900)
Nat Chem. 2016 Jan;8(1):16-23. (PMID: 26673260)
J Phys Chem A. 2015 May 7;119(18):4151-61. (PMID: 25856414)
J Chem Phys. 2015 Jun 14;142(22):224104. (PMID: 26071698)
Nat Mater. 2015 Apr;14(4):426-33. (PMID: 25581625)
J Phys Chem A. 2015 Jun 25;119(25):6602-10. (PMID: 26001065)
J Chem Phys. 2011 Dec 7;135(21):214508. (PMID: 22149803)
J Am Chem Soc. 2015 Apr 22;137(15):5130-9. (PMID: 25825939)
J Phys Chem Lett. 2014 Jul 17;5(14):2425-30. (PMID: 26277810)
J Phys Chem A. 2015 Jan 15;119(2):299-311. (PMID: 25522781)
J Phys Chem Lett. 2015 May 21;6(10):1841-6. (PMID: 26263258)
Rev Sci Instrum. 2015 Jun;86(6):066107. (PMID: 26133882)
J Phys Chem Lett. 2016 Jul 7;7(13):2370-5. (PMID: 27281713)
J Am Chem Soc. 2014 Apr 16;136(15):5755-64. (PMID: 24697685)
Nat Chem. 2010 Aug;2(8):648-52. (PMID: 20651727)
Nat Commun. 2017 Jul 12;8:15953. (PMID: 28699637)
J Phys Chem Lett. 2013 Apr 4;4(7):1065-9. (PMID: 26282022)
J Am Chem Soc. 2010 Nov 24;132(46):16302-3. (PMID: 21043452)
Chem Rev. 2006 Dec;106(12):5028-48. (PMID: 17165682)
Pharm Res. 2018 Feb 7;35(3):51. (PMID: 29417314)
J Phys Chem B. 2013 Dec 12;117(49):15519-26. (PMID: 23789842)
J Phys Chem A. 2017 Dec 7;121(48):9229-9242. (PMID: 29160072)
J Phys Chem A. 2017 Nov 16;121(45):8596-8603. (PMID: 29035058)
J Am Chem Soc. 2018 Feb 14;140(6):2326-2335. (PMID: 29392936)
J Phys Chem B. 2010 Nov 18;114(45):14168-77. (PMID: 20184354)
Adv Mater. 2016 Sep;28(34):7539-47. (PMID: 27348847)
Angew Chem Int Ed Engl. 2016 Mar 1;55(10):3373-7. (PMID: 26836223)
Annu Rev Phys Chem. 2013;64:361-86. (PMID: 23298243)
J Am Chem Soc. 2016 Dec 14;138(49):16069-16080. (PMID: 27960344)
J Phys Chem Lett. 2017 Dec 7;8(23):5700-5706. (PMID: 29112418)
J Am Chem Soc. 2012 Jan 11;134(1):386-97. (PMID: 22111926)
Nat Commun. 2017 May 18;8:15171. (PMID: 28516916)
Nanoscale. 2016 May 21;8(19):10113-23. (PMID: 27122097)
Angew Chem Int Ed Engl. 2015 Jul 20;54(30):8679-83. (PMID: 26097009)
J Phys Chem A. 2012 Jan 12;116(1):653-62. (PMID: 22103406)
Phys Chem Chem Phys. 2016 Mar 21;18(11):7751-61. (PMID: 26910414)
J Chem Phys. 2010 Oct 14;133(14):144506. (PMID: 20950016)
J Phys Chem A. 2016 Aug 11;120(31):6236-41. (PMID: 27448100)
Sci Adv. 2017 Jul 14;3(7):e1700241. (PMID: 28740866)
J Am Chem Soc. 2011 Aug 10;133(31):11830-3. (PMID: 21755937)
Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104. (PMID: 15238266)
J Am Chem Soc. 2015 Jul 22;137(28):8965-72. (PMID: 26102432)
J Phys Chem Lett. 2016 Oct 6;7(19):3925-3930. (PMID: 27653705)
Chem Rev. 2010 Nov 10;110(11):6891-936. (PMID: 21053979)
J Phys Chem A. 2015 Dec 24;119(51):12699-705. (PMID: 26595530)
Nat Chem. 2013 Dec;5(12):1019-24. (PMID: 24256865)
J Am Chem Soc. 2010 Oct 13;132(40):13988-91. (PMID: 20857932)
J Chem Phys. 2017 May 7;146(17):174703. (PMID: 28477613)
J Am Chem Soc. 2016 Jun 15;138(23):7289-97. (PMID: 27183040)
J Phys Chem Lett. 2014 Jul 3;5(13):2312-9. (PMID: 26279552)
J Chem Phys. 2013 Mar 21;138(11):114103. (PMID: 23534623)
J Am Chem Soc. 2012 May 23;134(20):8597-607. (PMID: 22530591)
J Chem Phys. 2013 Mar 21;138(11):114102. (PMID: 23534622)
Acc Chem Res. 2010 Mar 16;43(3):429-39. (PMID: 20014774)
Phys Rev Lett. 2010 Dec 17;105(25):257403. (PMID: 21231627)
Nat Chem. 2016 Dec;8(12):1120-1125. (PMID: 27874873)
Nat Commun. 2016 Dec 07;7:13622. (PMID: 27924819)
J Am Chem Soc. 2016 Jan 20;138(2):617-27. (PMID: 26693957)
J Phys Chem Lett. 2015 Nov 19;6(22):4456-62. (PMID: 26505732)
J Phys Chem B. 2016 Feb 25;120(7):1357-66. (PMID: 26820909)
J Phys Chem Lett. 2014 Oct 2;5(19):3345-53. (PMID: 26278443)
J Am Chem Soc. 2014 Sep 10;136(36):12638-47. (PMID: 25140824)
J Am Chem Soc. 2014 Jul 30;136(30):10654-60. (PMID: 24983697)
J Chem Phys. 2014 Aug 21;141(7):074705. (PMID: 25149804)
Adv Drug Deliv Rev. 2016 May 1;100:183-93. (PMID: 26712710)
J Phys Chem Lett. 2016 Nov 3;7(21):4405-4412. (PMID: 27759395)
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5325-30. (PMID: 25858954)
J Am Chem Soc. 2014 May 21;136(20):7363-73. (PMID: 24735403)
J Phys Chem A. 2017 Feb 2;121(4):784-792. (PMID: 28045527)
J Phys Chem Lett. 2017 Dec 7;8(23):5929-5934. (PMID: 29166019)
J Am Chem Soc. 2017 Jan 18;139(2):663-671. (PMID: 27977196)
Org Lett. 2002 Jan 10;4(1):15-8. (PMID: 11772079)
Phys Chem Chem Phys. 2017 Feb 22;19(8):5737-5745. (PMID: 28084484)
J Am Chem Soc. 2013 Nov 20;135(46):17278-81. (PMID: 24171495)
J Am Chem Soc. 2017 Aug 30;139(34):11745-11751. (PMID: 28763611)
Nat Chem. 2018 Mar;10(3):305-310. (PMID: 29461531)
Sci Rep. 2017 Apr 11;7:46367. (PMID: 28397829)
J Am Chem Soc. 2013 Oct 2;135(39):14701-12. (PMID: 24011336)
Phys Chem Chem Phys. 2014 Nov 21;16(43):23735-42. (PMID: 25272158)
ACS Omega. 2017 Aug 31;2(8):5095-5103. (PMID: 30023738)
J Am Chem Soc. 2012 Apr 11;134(14):6388-400. (PMID: 22432700)
J Am Chem Soc. 2017 Nov 8;139(44):15572-15575. (PMID: 29039927)
J Phys Chem B. 2010 Nov 18;114(45):14223-32. (PMID: 20025238)
Radiat Res. 1963 Sep;20:55-70. (PMID: 14061481)
J Phys Chem Lett. 2014 Aug 7;5(15):2588-93. (PMID: 26277948)
J Phys Chem Lett. 2012 Sep 20;3(18):2719-23. (PMID: 26295897)
تواريخ الأحداث: Date Created: 20180810 Latest Revision: 20231103
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC6062843
DOI: 10.1039/c8sc00293b
PMID: 30090312
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-6520
DOI:10.1039/c8sc00293b