دورية أكاديمية

Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency.

التفاصيل البيبلوغرافية
العنوان: Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency.
المؤلفون: Feucht J; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Sun J; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejing, China., Eyquem J; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Ho YJ; Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Zhao Z; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Leibold J; Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Dobrin A; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Cabriolu A; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Hamieh M; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Sadelain M; Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA. m-sadelain@ski.mskcc.org.
المصدر: Nature medicine [Nat Med] 2019 Jan; Vol. 25 (1), pp. 82-88. Date of Electronic Publication: 2018 Dec 17.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Cell Lineage* , Immunotherapy*, Receptors, Antigen, T-Cell/*metabolism , T-Lymphocytes/*immunology, Animals ; Calibration ; Cell Line ; Male ; Mice ; Protein Domains ; Receptors, Antigen, T-Cell/chemistry
مستخلص: Chimeric antigen receptors (CARs) are synthetic receptors that target and reprogram T cells to acquire augmented antitumor properties 1 . CD19-specific CARs that comprise CD28 and CD3ζ signaling motifs 2 have induced remarkable responses in patients with refractory leukemia 3-5 and lymphoma 6 and were recently approved by the US Food and Drug Administration 7 . These CARs program highly performing effector functions that mediate potent tumor elimination 4,8 despite the limited persistence they confer on T cells 3-6,8 . Extending their functional persistence without compromising their potency should improve current CAR therapies. Strong T cell activation drives exhaustion 9,10 , which may be accentuated by the redundancy of CD28 and CD3ζ signaling 11,12 as well as the spatiotemporal constraints imparted by the structure of second-generation CARs 2 . Thus, we hypothesized that calibrating the activation potential of CD28-based CARs would differentially reprogram T cell function and differentiation. Here, we show that CARs encoding a single immunoreceptor tyrosine-based activation motif direct T cells to different fates by balancing effector and memory programs, thereby yielding CAR designs with enhanced therapeutic profiles.
التعليقات: Erratum in: Nat Med. 2019 Mar;25(3):530. (PMID: 30692700)
References: Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017). (PMID: 10.1038/nature22395)
Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002). (PMID: 10.1038/nbt0102-70)
Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013). (PMID: 10.1126/scitranslmed.3005930)
Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015). (PMID: 10.1016/S0140-6736(14)61403-3)
Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018). (PMID: 10.1056/NEJMoa1709919)
Neelapu, S. S. et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). (PMID: 10.1056/NEJMoa1707447)
Sadelain, M. CD19 CAR T cells. Cell 171, 1471 (2017). (PMID: 10.1016/j.cell.2017.12.002)
Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015). (PMID: 10.1016/j.ccell.2015.09.004)
Youngblood, B., Davis, C. W. & Ahmed, R. Making memories that last a lifetime: heritable functions of self-renewing memory CD8 T cells. Int. Immunol. 22, 797–803 (2010). (PMID: 10.1093/intimm/dxq437)
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015). (PMID: 10.1038/nri3862)
Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003). (PMID: 10.1038/nri1248)
Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009). (PMID: 10.1146/annurev.immunol.021908.132706)
Love, P. E. & Hayes, S. M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Perspect. Biol. 2, a002485 (2010). (PMID: 10.1101/cshperspect.a002485)
Kersh, E. N., Shaw, A. S. & Allen, P. M. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281, 572–575 (1998). (PMID: 10.1126/science.281.5376.572)
Isakov, N. et al. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J. Exp. Med. 181, 375–380 (1995). (PMID: 10.1084/jem.181.1.375)
van Oers, N. S. et al. The 21- and 23-kD forms of TCR zeta are generated by specific ITAM phosphorylations. Nat. Immunol. 1, 322–328 (2000). (PMID: 10.1038/79774)
Chae, W. J. et al. Qualitatively differential regulation of T cell activation and apoptosis by T cell receptor zeta chain ITAMs and their tyrosine residues. Int. Immunol. 16, 1225–1236 (2004). (PMID: 10.1093/intimm/dxh120)
Mukhopadhyay, H., Cordoba, S. P., Maini, P. K., van der Merwe, P. A. & Dushek, O. Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput. Biol. 9, e1003004 (2013). (PMID: 10.1371/journal.pcbi.1003004)
Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). (PMID: 10.1038/nature21405)
Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003). (PMID: 10.1038/nm827)
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011). (PMID: 10.1038/nm.2446)
Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014). (PMID: 10.1038/ni.3031)
Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8 + T cell differentiation. Nat. Immunol. 18, 573–582 (2017). (PMID: 10.1038/ni.3706)
Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8 + T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012). (PMID: 10.1038/nri3307)
Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8 + T cells. Nat. Immunol. 3, 558–563 (2002). (PMID: 10.1038/ni802)
Zhou, X. & Xue, H. H. Cutting edge: generation of memory precursors and functional memory CD8 + T cells depends on T cell factor-1 and lymphoid enhancer-binding factor-1. J. Immunol. 189, 2722–2726 (2012). (PMID: 10.4049/jimmunol.1201150)
Carlson, C. M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006). (PMID: 10.1038/nature04882)
Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007). (PMID: 10.4049/jimmunol.178.12.7632)
Daniels, M. A. & Teixeiro, E. TCR signaling in T cell memory. Front. Immunol. 6, 617 (2015). (PMID: 10.3389/fimmu.2015.00617)
Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). (PMID: 10.1038/s41591-018-0010-1)
Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8 + and CD4 + subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016). (PMID: 10.1038/leu.2015.247)
Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009). (PMID: 10.4049/jimmunol.0900447)
James, J. R. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci. Signal. 11, eaan1088 (2018). (PMID: 10.1126/scisignal.aan1088)
Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010). (PMID: 10.1182/blood-2010-01-265041)
Rivière, I., Brose, K. & Mulligan, R. C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl Acad. Sci. USA 92, 6733–6737 (1995). (PMID: 10.1073/pnas.92.15.6733)
Gong, M. C. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1, 123–127 (1999). (PMID: 10.1038/sj.neo.7900018)
Brentjens, R. J. et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13, 5426–5435 (2007). (PMID: 10.1158/1078-0432.CCR-07-0674)
Ghosh, A. et al. Adoptively transferred TRAIL + T cells suppress GVHD and augment antitumor activity. J. Clin. Invest. 123, 2654–2662 (2013). (PMID: 10.1172/JCI66301)
Gade, T. P. et al. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res. 65, 9080–9088 (2005). (PMID: 10.1158/0008-5472.CAN-05-0436)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts635)
معلومات مُعتمدة: P30 CA008748 United States CA NCI NIH HHS
المشرفين على المادة: 0 (CD19-specific chimeric antigen receptor)
0 (Receptors, Antigen, T-Cell)
تواريخ الأحداث: Date Created: 20181219 Date Completed: 20190510 Latest Revision: 20220416
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC6532069
DOI: 10.1038/s41591-018-0290-5
PMID: 30559421
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-018-0290-5