دورية أكاديمية

Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy.

التفاصيل البيبلوغرافية
العنوان: Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy.
المؤلفون: Logtenberg MEW; Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Jansen JHM; Laboratory for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands., Raaben M; Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Toebes M; Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Franke K; Department of Blood Cell Research, Sanquin Research, Landsteiner Laboratory, and Department of Molecular Cell Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands., Brandsma AM; Laboratory for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands., Matlung HL; Department of Blood Cell Research, Sanquin Research, Landsteiner Laboratory, and Department of Molecular Cell Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands., Fauster A; Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Gomez-Eerland R; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Bakker NAM; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands., van der Schot S; Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Marijt KA; Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands., Verdoes M; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.; Institute for Chemical Immunology, Amsterdam, The Netherlands., Haanen JBAG; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands., van den Berg JH; Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Neefjes J; Institute for Chemical Immunology, Amsterdam, The Netherlands.; Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands., van den Berg TK; Department of Blood Cell Research, Sanquin Research, Landsteiner Laboratory, and Department of Molecular Cell Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands., Brummelkamp TR; Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands., Leusen JHW; Laboratory for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands., Scheeren FA; Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands., Schumacher TN; Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands. t.schumacher@nki.nl.; Institute for Chemical Immunology, Amsterdam, The Netherlands. t.schumacher@nki.nl.
المصدر: Nature medicine [Nat Med] 2019 Apr; Vol. 25 (4), pp. 612-619. Date of Electronic Publication: 2019 Mar 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Immunotherapy*, Aminoacyltransferases/*metabolism , Antigens, Differentiation/*metabolism , CD47 Antigen/*metabolism , Neoplasms/*immunology , Neoplasms/*therapy , Receptors, Immunologic/*metabolism, Aminoacyltransferases/antagonists & inhibitors ; Animals ; Cell Line, Tumor ; Cell Membrane/metabolism ; Humans ; Mice, Transgenic ; Neoplasms/pathology ; Opsonin Proteins/metabolism ; Pyrrolidonecarboxylic Acid/metabolism
مستخلص: Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells 1 . The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells 2-5 . Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.
References: Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4–328rv4 (2016). (PMID: 10.1126/scitranslmed.aad7118)
Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009). (PMID: 10.1016/j.cell.2009.05.046)
Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009). (PMID: 10.1016/j.cell.2009.05.045)
Weiskopf, K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur. J. Cancer 76, 100–109 (2017). (PMID: 10.1016/j.ejca.2017.02.013)
Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012). (PMID: 10.1073/pnas.1121623109)
Matlung, H. L., Szilagyi, K., Barclay, N. A. & van den Berg, T. K. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 276, 145–164 (2017). (PMID: 10.1111/imr.12527)
Zhao, X. W. et al. CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction. Proc. Natl Acad. Sci. USA 108, 18342–18347 (2011). (PMID: 10.1073/pnas.1106550108)
Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94–63ra94 (2010). (PMID: 10.1126/scitranslmed.3001375)
Chen, J. et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017). (PMID: 10.1038/nature22076)
Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010). (PMID: 10.1016/j.cell.2010.07.044)
Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013). (PMID: 10.1126/science.1238856)
Ring, N. G. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl Acad. Sci. USA 114, E10578–E10585 (2017). (PMID: 10.1073/pnas.1710877114)
Advani, R. et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018). (PMID: 10.1056/NEJMoa1807315)
Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016). (PMID: 10.1126/science.aac9935)
Seiffert, M. et al. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood 94, 3633–3643 (1999). (PMID: 10572074)
Cynis, H. et al. Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. J. Mol. Biol. 379, 966–980 (2008). (PMID: 10.1016/j.jmb.2008.03.078)
Schilling, S. et al. Identification of human glutaminyl cyclase as a metalloenzyme. Potent inhibition by imidazole derivatives and heterocyclic chelators. J. Biol. Chem. 278, 49773–49779 (2003). (PMID: 10.1074/jbc.M309077200)
Stephan, A. et al. Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS. J. 276, 6522–6536 (2009). (PMID: 10.1111/j.1742-4658.2009.07337.x)
Jimenez-Sanchez, M. et al. siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat. Chem. Biol. 11, 347–354 (2015). (PMID: 10.1038/nchembio.1790)
Saido, T. C. et al. Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques. Neuron 14, 457–466 (1995). (PMID: 10.1016/0896-6273(95)90301-1)
Tekirian, T. L., Yang, A. Y., Glabe, C. & Geddes, J. W. Toxicity of pyroglutaminated amyloid β-peptides 3(pE)-40 and -42 is similar to that of Aβ1-40 and -42. J. Neurochem 73, 1584–1589 (2002). (PMID: 10.1046/j.1471-4159.1999.0731584.x)
Russo, C. et al. Pyroglutamate-modified amyloid β-peptides - AβN3(pE) - strongly affect cultured neuron and astrocyte survival. J. Neurochem. 82, 1480–1489 (2002). (PMID: 10.1046/j.1471-4159.2002.01107.x)
Hatherley, D. et al. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol. Cell 31, 266–277 (2008). (PMID: 10.1016/j.molcel.2008.05.026)
Ho, C. C. M. et al. ‘Velcro’ engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. J. Biol. Chem. 290, 12650–12663 (2015). (PMID: 10.1074/jbc.M115.648220)
Brooke, G., Holbrook, J. D., Brown, M. H. & Barclay, A. N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol. 173, 2562–2570 (2004). (PMID: 10.4049/jimmunol.173.4.2562)
Huang, K.-F., Wang, Y.-R., Chang, E.-C., Chou, T.-L. & Wang, A. H.-J. A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. Biochem. J. 411, 181–190 (2008). (PMID: 10.1042/BJ20071073)
Grizenkova, J. et al. Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice. Proc. Natl Acad. Sci. USA 109, 13722–13727 (2012). (PMID: 10.1073/pnas.1208917109)
Schilling, S. et al. Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat. Med. 14, 1106–1111 (2008). (PMID: 10.1038/nm.1872)
Hoffmann, T. et al. Glutaminyl cyclase inhibitor PQ912 improves cognition in mouse models of Alzheimer’s disease-studies on relation to effective target occupancy. J. Pharmacol. Exp. Ther. 362, 119–130 (2017). (PMID: 10.1124/jpet.117.240614)
Lues, I. et al. A phase 1 study to evaluate the safety and pharmacokinetics of PQ912, a glutaminyl cyclase inhibitor, in healthy subjects. Alzheimers Dement. (NY) 1, 182–195 (2015).
Huang, K. F., Liu, Y. L., Cheng, W. J., Ko, T. P. & Wang, A. H. J. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl Acad. Sci. USA 102, 13117–13122 (2005). (PMID: 10.1073/pnas.0504184102)
Boross, P. et al. IgA EGFR antibodies mediate tumour killing in vivo. EMBO Mol. Med. 5, 1213–1226 (2013). (PMID: 10.1002/emmm.201201929)
Liu, X. et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 21, 1209–1215 (2015). (PMID: 10.1038/nm.3931)
Ingram, J. R. et al. Localized CD47 blockade enhances immunotherapy for murine melanoma. Proc. Natl Acad. Sci. USA 114, 10184–10189 (2017). (PMID: 10.1073/pnas.1710776114)
Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017). (PMID: 10.1038/nature23270)
Sockolosky, J. T. et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl Acad. Sci. USA 113, E2646–E2654 (2016). (PMID: 10.1073/pnas.1604268113)
Ansell, S. et al. A phase 1 study of TTI-621, a novel immune checkpoint inhibitor targeting CD47, in patients with relapsed or refractory hematologic malignancies. Blood 128, 1812 (2016).
Scheltens, P. et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res. Ther. 10, 107 (2018). (PMID: 10.1186/s13195-018-0431-6)
Morty, R. E., Bulau, P., Pellé, R., Wilk, S. & Abe, K. Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts. Biochem. J. 394, 635–645 (2006). (PMID: 10.1042/BJ20051593)
Gong, Q. et al. A ultrasensitive near-infrared fluorescent probe reveals pyroglutamate aminopeptidase 1 can be a new inflammatory cytokine. Adv. Sci. (Weinh) 5, 1700664 (2018). (PMID: 10.1002/advs.201700664)
Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015). (PMID: 10.1126/science.aac7557)
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 10.1186/gb-2009-10-3-r25)
Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011). (PMID: 10.1038/nature10348)
Bracke, M., Lammers, J. W., Coffer, P. J. & Koenderman, L. Cytokine-induced inside-out activation of FcalphaR (CD89) is mediated by a single serine residue (S263) in the intracellular domain of the receptor. Blood 97, 3478–3483 (2001). (PMID: 10.1182/blood.V97.11.3478)
Berkovits, B. D. & Mayr, C. Alternative 3’ UTRs act as scaffolds to regulate membrane protein localization. Nature 522, 363–367 (2015). (PMID: 10.1038/nature14321)
Lackner, D. H. et al. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat. Commun. 6, 10237 (2015). (PMID: 10.1038/ncomms10237)
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168–e168 (2014). (PMID: 10.1093/nar/gku936)
Neefjes, J. J., Breur-Vriesendorp, B. S., van Seventer, G. A., Iványi, P. & Ploegh, H. L. An improved biochemical method for the analysis of HLA-class I antigens. Definition of new HLA-class I subtypes. Hum. Immunol. 16, 169–181 (1986). (PMID: 10.1016/0198-8859(86)90046-7)
Kuijpers, T. W. et al. Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood 78, 1105–1111 (1991). (PMID: 1907873)
Brandsma, A. M. et al. Simultaneous targeting of FcγRs and FcαRI enhances tumor cell killing. Cancer Immunol. Res. 3, 1316–1324 (2015). (PMID: 10.1158/2326-6066.CIR-15-0099-T)
Meyer, S. et al. Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting. Mabs 8, 87–98 (2016). (PMID: 10.1080/19420862.2015.1106658)
de Haij, S. et al. In vivo cytotoxicity of type I CD20 antibodies critically depends on Fc receptor ITAM signaling. Cancer Res. 70, 3209–3217 (2010). (PMID: 10.1158/0008-5472.CAN-09-4109)
Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 172, 549–563.e16 (2018). (PMID: 10.1016/j.cell.2017.11.043)
Hadrup, S. R. et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6, 520–526 (2009). (PMID: 10.1038/nmeth.1345)
معلومات مُعتمدة: 742259 International ERC_ European Research Council
المشرفين على المادة: 0 (Antigens, Differentiation)
0 (CD47 Antigen)
0 (Opsonin Proteins)
0 (Receptors, Immunologic)
0 (SIRPA protein, human)
EC 2.3.2.- (Aminoacyltransferases)
EC 2.3.2.5 (glutaminyl-peptide cyclotransferase)
SZB83O1W42 (Pyrrolidonecarboxylic Acid)
تواريخ الأحداث: Date Created: 20190306 Date Completed: 20190510 Latest Revision: 20220218
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7025889
DOI: 10.1038/s41591-019-0356-z
PMID: 30833751
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-019-0356-z