دورية أكاديمية

Optical control of sphingosine-1-phosphate formation and function.

التفاصيل البيبلوغرافية
العنوان: Optical control of sphingosine-1-phosphate formation and function.
المؤلفون: Morstein J; Department of Chemistry, New York University, New York, New York, NY, USA., Hill RZ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA., Novak AJE; Department of Chemistry, New York University, New York, New York, NY, USA., Feng S; Department of Biochemistry, University of Geneva, Geneva, Switzerland.; National Centre of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland., Norman DD; Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA., Donthamsetti PC; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA., Frank JA; Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Munich, Germany., Harayama T; Department of Biochemistry, University of Geneva, Geneva, Switzerland.; National Centre of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland., Williams BM; Department of Chemistry and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Munich, Germany., Parrill AL; Department of Chemistry, University of Memphis, Memphis, TN, USA.; Computational Research on Materials Institute, University of Memphis, Memphis, TN, USA., Tigyi GJ; Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA., Riezman H; Department of Biochemistry, University of Geneva, Geneva, Switzerland.; National Centre of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland., Isacoff EY; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA., Bautista DM; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA., Trauner D; Department of Chemistry, New York University, New York, New York, NY, USA. dirktrauner@nyu.edu.
المصدر: Nature chemical biology [Nat Chem Biol] 2019 Jun; Vol. 15 (6), pp. 623-631. Date of Electronic Publication: 2019 Apr 29.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Lysophospholipids/*metabolism , Sphingosine/*analogs & derivatives, Animals ; Lysophospholipids/chemistry ; Mice ; Models, Molecular ; Molecular Structure ; Optical Imaging ; Photochemical Processes ; Sphingosine/chemistry ; Sphingosine/metabolism
مستخلص: Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G-protein-coupled receptors (GPCRs) (S1P 1-5 ) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P 1-3 , shown through electrophysiology and Ca 2+ mobilization assays. We evaluated PhotoS1P in vivo, where it reversibly controlled S1P 3 -dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light dependent, providing a novel approach to optically probe sphingolipid biology.
References: Fyrst, H. & Saba, J. D. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6, 489–497 (2010). (PMID: 10.1038/nchembio.392)
Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008). (PMID: 10.1038/nrm2329)
Maceyka, M., Harikumar, K. B., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22, 50–60 (2012). (PMID: 10.1016/j.tcb.2011.09.003)
Proia, R. L. & Hla, T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest. 125, 1379–1387 (2015). (PMID: 10.1172/JCI76369)
Hait, N. C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009). (PMID: 10.1126/science.1176709)
Hill, R. Z. et al. The signaling lipid sphingosine-1-phosphate regulates mechanical pain. eLife 7, e33285 (2018). (PMID: 10.7554/eLife.33285)
Mair, N. et al. Genetic evidence for involvement of neuronally expressed s1p1 receptor in nociceptor sensitization and inflammatory pain. PLoS One 6, e17268 (2011). (PMID: 10.1371/journal.pone.0017268)
Camprubí-Robles, M. et al. Sphingosine-1-phosphate-induced nociceptor excitation and ongoing pain behavior in mice and humans is largely mediated by S1P3 receptor. J. Neurosci. 33, 2582–2592 (2013). (PMID: 10.1523/JNEUROSCI.4479-12.2013)
Kim, R. H., Takabe, K., Milstien, S. & Spiegel, S. Export and functions of sphingosine-1-phosphate. Biochim. Biophys. Acta BBA 2009, 692–696 (1791).
Książek, M., Chacińska, M., Chabowski, A. & Baranowski, M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J. Lipid Res. 56, 1271–1281 (2015). (PMID: 10.1194/jlr.R059543)
Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine-1-phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002). (PMID: 10.1074/jbc.C200176200)
Chun, J. & Hartung, H.-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010). (PMID: 10.1097/WNF.0b013e3181cbf825)
Wenk, M. R. Lipidomics: new tools and applications. Cell 143, 888–895 (2010). (PMID: 10.1016/j.cell.2010.11.033)
Wenk, M. R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4, 594–610 (2005). (PMID: 10.1038/nrd1776)
Schwarzmann, G., Arenz, C. & Sandhoff, K. Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochim. Biophys. Acta BBA 2014, 1161–1173 (1841).
Haberkant, P. & Holthuis, J. C. M. Fat & fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta BBA 1841, 1022–1030 (2014). (PMID: 10.1016/j.bbalip.2014.01.003)
Höglinger, D., Nadler, A. & Schultz, C. Caged lipids as tools for investigating cellular signaling. Biochim. Biophys. Acta BBA 1841, 1085–1096 (2014). (PMID: 10.1016/j.bbalip.2014.03.012)
Feng, S. et al. Mitochondria-specific photoactivation to monitor local sphingosine metabolism and function. eLife 7, e34555 (2018). (PMID: 10.7554/eLife.34555)
Broichhagen, J., Frank, J. A. & Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res. 48, 1947–1960 (2015). (PMID: 10.1021/acs.accounts.5b00129)
Frank, J. A., Moroni, M., Moshourab, R., Sumser, M. & Lewin, G. R. Photoswitchable fatty acids enable optical control of TRPV1. Nat Commun. 6, 7118 (2015). (PMID: 10.1038/ncomms8118)
Leinders-Zufall, T. et al. PhoDAGs enable optical control of diacylglycerol-sensitive transient receptor potential channels. Cell Chem. Biol. 25, 215–223.e3 (2017). (PMID: 10.1016/j.chembiol.2017.11.008)
Frank, J. A. et al. Optical control of GPR40 signalling in pancreatic β-cells. Chem. Sci. 8, 7604–7610 (2017). (PMID: 10.1039/C7SC01475A)
Lichtenegger, M. et al. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 14, 396–404 (2018). (PMID: 10.1038/s41589-018-0015-6)
Frank, J. A., Franquelim, H. G., Schwille, P. & Trauner, D. Optical control of lipid rafts with photoswitchable ceramides. J. Am. Chem. Soc. 138, 12981–12986 (2016). (PMID: 10.1021/jacs.6b07278)
Pernpeintner, C. et al. Light-controlled membrane mechanics and shape transitions of photoswitchable lipid vesicles. Langmuir 33, 4083–4089 (2017). (PMID: 10.1021/acs.langmuir.7b01020)
Frank, J. A. et al. Photoswitchable diacylglycerols enable optical control of protein kinase C. Nat. Chem. Biol. 12, 755–762 (2016). (PMID: 10.1038/nchembio.2141)
Hüll, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018). (PMID: 10.1021/acs.chemrev.8b00037)
Bünemann, M. et al. A novel membrane receptor with high affinity for lysosphingomyelin and sphingosine-1-phosphate in atrial myocytes. EMBO J. 15, 5527–5534 (1996). (PMID: 10.1002/j.1460-2075.1996.tb00937.x)
Troupiotis-Tsaïlaki, A. et al. Ligand chain length drives activation of lipid G protein-coupled receptors. Sci. Rep. 7, 2020 (2017). (PMID: 10.1038/s41598-017-02104-5)
Jeffery, T. Palladium-catalysed arylation of allylic alcohols: highly selective synthesis of β-aromatic carbonyl compounds or β-aromatic α,β-unsaturated alcohols. Tetrahedron Lett. 32, 2121–2124 (1991). (PMID: 10.1016/S0040-4039(00)71252-4)
Yamamoto, T., Hasegawa, H., Hakogi, T. & Katsumura, S. Versatile synthetic method for sphingolipids and functionalized sphingosine derivatives via olefin cross metathesis. Org. Lett. 8, 5569–5572 (2006). (PMID: 10.1021/ol062258l)
Lim, H.-S., Oh, Y.-S., Suh, P.-G. & Chung, S.-K. Syntheses of sphingosine-1-phosphate stereoisomers and analogues and their interaction with EDG receptors. Bioorg. Med. Chem. Lett. 13, 237–240 (2003). (PMID: 10.1016/S0960-894X(02)00893-4)
Chan, K. W., Sui, J.-L., Vivaudou, M. & Logothetis, D. E. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc. Natl Acad. Sci. USA 93, 14193–14198 (1996). (PMID: 10.1073/pnas.93.24.14193)
Atwood, B. K., Lopez, J., Wager-Miller, J., Mackie, K. & Straiker, A. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics 12, 14 (2011). (PMID: 10.1186/1471-2164-12-14)
Valentine, W. J. & Tigyi, G. in Sphingosine-1-Phosphate: Methods in Molecular Biology Vol. 874 (eds Pébay, A. & Turksen, K.) (Humana Press, 2012).
Rios Candelore, M. et al. Phytosphingosine-1-phosphate: a high affinity ligand for the S1P4/Edg-6 receptor. Biochem. Biophys. Res. Commun. 297, 600–606 (2002). (PMID: 10.1016/S0006-291X(02)02237-4)
Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009). (PMID: 10.1016/j.cell.2009.09.028)
Hill, R. Z., Morita, T., Brem, R. B. & Bautista, D. M. S1PR3 mediates itch and pain via distinct TRP channel-dependent pathways. J. Neurosci. 38, 7833–7843 (2018). (PMID: 10.1523/JNEUROSCI.1266-18.2018)
Harayama, T. & Riezman, H. Detection of genome-edited mutant clones by a simple competition-based PCR method. PLoS One 12, e0179165 (2017). (PMID: 10.1371/journal.pone.0179165)
Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018). (PMID: 10.1038/nrm.2017.138)
Han, X., Yang, K. & Gross, R. W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31, 134–178 (2012). (PMID: 10.1002/mas.20342)
Flock, T. et al. Selectivity determinants of GPCR–G-protein binding. Nature 545, 317–322 (2017). (PMID: 10.1038/nature22070)
Weth-Malsch, D. et al. Ablation of sphingosine 1-phosphate receptor subtype 3 impairs hippocampal neuron excitability in vitro and spatial working memory in vivo. Front. Cell. Neurosci. 10, 258 (2016). (PMID: 10.3389/fncel.2016.00258)
Alvarez, S. E. et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465, 1084–1088 (2010). (PMID: 10.1038/nature09128)
Takasugi, N. et al. BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J. Neurosci. 31, 6850–6857 (2011). (PMID: 10.1523/JNEUROSCI.6467-10.2011)
Molecular Operating Environment (MOE) v.2013.08 (Chemical Computing Group ULC, 2018).
Berman, H. M. et al. The protein data bank. Acta Crystallogr. 58, 899–907 (2002).
Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012). (PMID: 10.1126/science.1215904)
Inagaki, Y. et al. Sphingosine-1-phosphate analogue recognition and selectivity at S1P4 within the endothelial differentiation gene family of receptors. Biochem. J. 389, 187–195 (2005). (PMID: 10.1042/BJ20050046)
Wang, D. A. et al. A single amino acid determines lysophospholipid specificity of the S1P1 (EDG1) and LPA1 (EDG2) phospholipid growth factor receptors. J. Biol. Chem. 276, 49213–49220 (2001). (PMID: 10.1074/jbc.M107301200)
Wilson, S. R. et al. TRPA1 Is required for histamine-independent, MAS-related G protein-coupled receptor-mediated itch. Nat. Neurosci. 14, 595–602 (2011). (PMID: 10.1038/nn.2789)
Guan, X. L. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20, 2083–2095 (2009). (PMID: 10.1091/mbc.e08-11-1126)
da Silveira dos Santos, A. X. et al. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell 25, 3234–3246 (2014). (PMID: 10.1091/mbc.e14-03-0851)
Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008). (PMID: 10.1194/jlr.D700041-JLR200)
Liao, S., Tammaro, M. & Yan, H. Enriching CRISPR-Cas9 targeted cells by co-targeting the HPRT gene. Nucleic Acids Res. 43, e134 (2015). (PMID: 10.1093/nar/gkv523)
Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014). (PMID: 10.1093/nar/gku936)
معلومات مُعتمدة: PN2 EY018241 United States EY NEI NIH HHS; R01 AR059385 United States AR NIAMS NIH HHS; R01 CA092160 United States CA NCI NIH HHS; R21 NS077224 United States NS NINDS NIH HHS
المشرفين على المادة: 0 (Lysophospholipids)
26993-30-6 (sphingosine 1-phosphate)
NGZ37HRE42 (Sphingosine)
تواريخ الأحداث: Date Created: 20190501 Date Completed: 20190729 Latest Revision: 20210126
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7428055
DOI: 10.1038/s41589-019-0269-7
PMID: 31036923
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-019-0269-7