دورية أكاديمية

Liver stage malaria infection is controlled by host regulators of lipid peroxidation.

التفاصيل البيبلوغرافية
العنوان: Liver stage malaria infection is controlled by host regulators of lipid peroxidation.
المؤلفون: Kain HS; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA., Glennon EKK; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Seattle Children's Research Institute, Seattle, WA, USA., Vijayan K; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Seattle Children's Research Institute, Seattle, WA, USA., Arang N; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Department of Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA., Douglass AN; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Pathobiology Program, University of Washington, Seattle, WA, USA., Fortin CL; Departments of Bioengineering & Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA., Zuck M; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Seattle Children's Research Institute, Seattle, WA, USA., Lewis AJ; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA., Whiteside SL; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Seattle Children's Research Institute, Seattle, WA, USA., Dudgeon DR; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA., Johnson JS; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA., Aderem A; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.; Seattle Children's Research Institute, Seattle, WA, USA.; Department of Immunology, University of Washington, Seattle, WA, USA., Stevens KR; Departments of Bioengineering & Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA., Kaushansky A; Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA. alexis.kaushansky@seattlechildrens.org.; Seattle Children's Research Institute, Seattle, WA, USA. alexis.kaushansky@seattlechildrens.org.; Department of Global Health, University of Washington, Seattle, WA, USA. alexis.kaushansky@seattlechildrens.org.
المصدر: Cell death and differentiation [Cell Death Differ] 2020 Jan; Vol. 27 (1), pp. 44-54. Date of Electronic Publication: 2019 May 07.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 9437445 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5403 (Electronic) Linking ISSN: 13509047 NLM ISO Abbreviation: Cell Death Differ Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003->: London : Nature Publishing Group
Original Publication: London : Edward Arnold, c1994-
مواضيع طبية MeSH: Lipid Peroxidation*, Amino Acid Transport System y+/*metabolism , Liver Diseases/*metabolism , Liver Diseases/*parasitology , Malaria/*metabolism, Amino Acid Transport System y+/antagonists & inhibitors ; Animals ; Cell Line ; Cells, Cultured ; Ferroptosis ; Mice, Inbred C57BL ; Mice, Knockout ; NADPH Oxidase 1/genetics ; Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors ; Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism ; Reactive Oxygen Species/metabolism ; Receptors, Transferrin/metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/metabolism
مستخلص: The facets of host control during Plasmodium liver infection remain largely unknown. We find that the SLC7a11-GPX4 pathway, which has been associated with the production of reactive oxygen species, lipid peroxidation, and a form of cell death called ferroptosis, plays a critical role in control of Plasmodium liver stage infection. Specifically, blocking GPX4 or SLC7a11 dramatically reduces Plasmodium liver stage parasite infection. In contrast, blocking negative regulators of this pathway, NOX1 and TFR1, leads to an increase in liver stage infection. We have shown previously that increased levels of P53 reduces Plasmodium LS burden in an apoptosis-independent manner. Here, we demonstrate that increased P53 is unable to control parasite burden during NOX1 or TFR1 knockdown, or in the presence of ROS scavenging or when lipid peroxidation is blocked. Additionally, SLC7a11 inhibitors Erastin and Sorafenib reduce infection. Thus, blocking the host SLC7a11-GPX4 pathway serves to selectively elevate lipid peroxides in infected cells, which localize within the parasite and lead to the elimination of liver stage parasites.
References: Kaushansky A, Kappe SH. Host ER stress during malaria parasite infection. EMBO Rep. 2015;16:883–4. (PMID: 261381014552477)
Lindner SE, Miller JL, Kappe SH. Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell Microbiol. 2012;14:316–24. (PMID: 221517033907120)
Scheller LF, Wirtz RA, Azad AF. Susceptibility of different strains of mice to hepatic infection with Plasmodium berghei. Infect Immun. 1994;62:4844–7. (PMID: 7927764303196)
Kaushansky A, Austin LS, Mikolajczak SA, Lo FY, Miller JL, Douglass AN, et al. Susceptibility to Plasmodium yoelii preerythrocytic infection in BALB/c substrains is determined at the point of hepatocyte invasion. Infect Immun. 2015;83:39–47. (PMID: 25312960)
Kaushansky A, Metzger PG, Douglass AN, Mikolajczak SA, Lakshmanan V, Kain HS, et al. Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis. Cell Death Dis. 2013;4:e762. (PMID: 239287013763448)
Miller JL, Sack BK, Baldwin M, Vaughan AM, Kappe SH. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep. 2014;7:436–47. (PMID: 24703850)
Liehl P, Zuzarte-Luis V, Chan J, Zillinger T, Baptista F, Carapau D, et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat Med. 2014;20:47–53. (PMID: 24362933)
Zheng H, Tan Z, Zhou T, Zhu F, Ding Y, Liu T, et al. The TLR2 is activated by sporozoites and suppresses intrahepatic rodent malaria parasite development. Sci Rep. 2015;5:18239. (PMID: 266673914678895)
Epiphanio S, Mikolajczak SA, Goncalves LA, Pamplona A, Portugal S, Albuquerque S, et al. Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe. 2008;3:331–8. (PMID: 18474360)
Goma J, Renia L, Miltgen F, Mazier D. Effects of iron deficiency on the hepatic development of Plasmodium yoelii. Parasite. 1995;2:351–6. (PMID: 8745736)
Zuzarte-Luis V, Mello-Vieira J, Marreiros IM, Liehl P, Chora AF, Carret CK, et al. Dietary alterations modulate susceptibility to Plasmodium infection. Nat Microbiol. 2017;2:1600–7. (PMID: 28947801)
Kaushansky A, Ye AS, Austin LS, Mikolajczak SA, Vaughan AM, Camargo N, et al. Suppression of host p53 is critical for Plasmodium liver-stage infection. Cell Rep. 2013;3:630–7. (PMID: 234780203619000)
Douglass AN, Kain HS, Abdullahi M, Arang N, Austin LS, Mikolajczak SA, et al. Host-based prophylaxis successfully targets liver stage malaria parasites. Mol Ther: J Am Soc Gene Ther. 2015;23:857–65.
Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–83. (PMID: 226822493688046)
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. (PMID: 226329703367386)
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31. (PMID: 244393854076414)
Dunn JC, Tompkins RG, Yarmush ML. Long-term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog. 1991;7:237–45. (PMID: 1367596)
Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nat Methods. 2014;11:122–3. (PMID: 24481216)
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87. (PMID: 24336571)
Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42:e168. (PMID: 253004844267669)
Vaughan AM, Mikolajczak SA, Camargo N, Lakshmanan V, Kennedy M, Lindner SE, et al. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle. Mol Biochem Parasitol. 2012;186:143–7. (PMID: 23107927)
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308. (PMID: 261667074506736)
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. (PMID: 257999884455927)
Austin LS, Kaushansky A, Kappe SH. Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy. Cell Microbiol. 2014;16:784–95. (PMID: 246120254008336)
Hanson KK, March S, Ng S, Bhatia SN, Mota MM. In vitro alterations do not reflect a requirement for host cell cycle progression during Plasmodium liver stage infection. Eukaryot Cell. 2015;14:96–103. (PMID: 25416236)
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8. (PMID: 14704432)
Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, et al. On the mechanism of cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3:232–43. (PMID: 283866015364454)
Agmon E, Solon J, Bassereau P, Stockwell BR. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep. 2018;8:5155. (PMID: 295814515979948)
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015;34:5617–25. (PMID: 257286734640181)
Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17. (PMID: 282125255312549)
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 2017;48:1033–43. (PMID: 282501975613764)
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. (PMID: 267944435072448)
Lachaier E, Louandre C, Godin C, Saidak Z, Baert M, Diouf M, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res. 2014;34:6417–22. (PMID: 25368241)
Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Maziere JC, Chauffert B, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133:1732–42. (PMID: 23505071)
Houessinon A, Francois C, Sauzay C, Louandre C, Mongelard G, Godin C, et al. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer. 2016;15:38. (PMID: 271848004894370)
Arang N, Kain HS, Glennon EK, Bello T, Dudgeon DR, Walter ENF, et al. Identifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles. Nat Commun. 2017;8:1232. (PMID: 290895415663700)
Bogacz M, Krauth-Siegel RL. Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. eLife. 2018;7:e37503. (PMID: 300478636117152)
Siegl C, Rudel T. Modulation of p53 during bacterial infections. Nat Rev Microbiol. 2015;13:741–8. (PMID: 26548915)
Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17:151–64. (PMID: 281381375328506)
Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells. Science. 2015;350:328–34. (PMID: 264052294651449)
Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363–9. (PMID: 249191534193940)
Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, Trombetta JJ, et al. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell. 2015;162:1309–21. (PMID: 263435794578813)
Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell. 2015;163:1400–12. (PMID: 266077944671824)
معلومات مُعتمدة: T32 AI007509 United States AI NIAID NIH HHS; R01 AI032972 United States AI NIAID NIH HHS; U19 AI100627 United States AI NIAID NIH HHS; R01 GM101183 United States GM NIGMS NIH HHS; R00 AI111785 United States AI NIAID NIH HHS; R01 AI025032 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Amino Acid Transport System y+)
0 (Reactive Oxygen Species)
0 (Receptors, Transferrin)
0 (Slc7a11 protein, mouse)
0 (Tfrc protein, mouse)
0 (Trp53 protein, mouse)
0 (Tumor Suppressor Protein p53)
EC 1.11.1.12 (Phospholipid Hydroperoxide Glutathione Peroxidase)
EC 1.11.1.9 (glutathione peroxidase 4, mouse)
EC 1.6.3.- (NADPH Oxidase 1)
EC 1.6.3.- (NOX1 protein, mouse)
تواريخ الأحداث: Date Created: 20190509 Date Completed: 20210402 Latest Revision: 20220825
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7206113
DOI: 10.1038/s41418-019-0338-1
PMID: 31065106
قاعدة البيانات: MEDLINE