دورية أكاديمية

Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta.

التفاصيل البيبلوغرافية
العنوان: Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta.
المؤلفون: Bento FM; Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil.; Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo, Piracicaba, Brazil., Marques RN; Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, Brazil., Campana FB; Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil., Demétrio CG; Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo, Piracicaba, Brazil., Leandro RA; Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo, Piracicaba, Brazil., Parra JRP; Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Universidade de São Paulo, Piracicaba, Brazil., Figueira A; Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil.
المصدر: Pest management science [Pest Manag Sci] 2020 Jan; Vol. 76 (1), pp. 287-295. Date of Electronic Publication: 2019 Jul 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for SCI by Wiley Country of Publication: England NLM ID: 100898744 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-4998 (Electronic) Linking ISSN: 1526498X NLM ISO Abbreviation: Pest Manag Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
مواضيع طبية MeSH: Enterobius* , Solanum lycopersicum*, Animals ; Gene Silencing ; RNA Interference ; RNA, Double-Stranded
مستخلص: Background: RNA interference (RNAi) has been evaluated in several insect pests as a novel strategy to be included in integrated pest management. Lepidopterans are recognized to be recalcitrant to gene silencing by RNAi. As such, double-stranded RNA (dsRNA) delivery needs to be adjusted to assure its stability until it reaches the target gene transcript for silencing. Gene silencing by RNAi offers the potential to be used in the control of Tuta absoluta (Meyrick), one of the main insect pests of tomato (Solanum lycopersicum) worldwide. Here, we tested the delivery of dsRNA expressed in Escherichia coli HT115(DE3) and supplied to larvae in an artificial diet by screening target genes for silencing. We tested six target genes: juvenile hormone inducible protein (JHP); juvenile hormone epoxide hydrolase protein (JHEH); ecdysteroid 25-hydroxylase (PHM); chitin synthase A (CHI); carboxylesterase (COE); and arginine kinase (AK).
Results: Based on larval mortality, the duration of the larval stage in days, pupal weight, and the accumulation of the target gene transcript, we demonstrated the efficacy of bacterial dsRNA delivery for the functional effects on larval development. Providing dsRNA targeted to JHP, CHI, COE and AK by bacteria led to a significant decrease in transcript accumulation and an increase in larval mortality.
Conclusion: Bacteria expressing dsRNA targeting essential T. absoluta genes supplied in artificial diet are efficient to screen RNAi target-genes. The oral delivery of dsRNA by bacteria is a novel potential alternative for the control of T. absoluta based on RNAi. © 2019 Society of Chemical Industry.
(© 2019 Society of Chemical Industry.)
References: Zhang J, Khan SA, Heckel DG and Bock R, Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35:871-882 (2017).
Carthew R and Sontheimer E, Origins and mechanisms of miRNAs and siRNAs. Cell 136:642-655 (2009).
Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O et al., Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322-1326 (2007).
Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ et al., Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307-1313 (2007).
Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S et al., RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231-245 (2011).
Rodrigues TB and Figueira A, Management of insect pest by RNAi: a new tool for crop protection, in RNA Interference, ed. by Abdurakhmonov I. InTech, Rijeka, pp. 371-390 (2016).
Yang J and Han Z, Optimisation of RNA interference-mediated gene silencing in Helicoverpa armigera. Austral Entomol 53:83-88 (2014).
Joga MR, Zotti MJ, Smagghe G and Christiaens O, RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:553 (2016).
Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S et al., Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4-14 (2013).
Garbutt JS, Bellés X, Richards EH and Reynolds SE, Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. J Insect Physiol 59:171-178 (2013).
Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG and Bock R, Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991-994 (2015).
Guan RB, Li HC, Fan YJ, Hu SR, Christiaens O, Smagghe G et al., A nuclease specific to lepidopteran insects suppresses RNAi. J Biol Chem 293:6011-6021 (2018).
Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B et al., Developmental control of a Lepidopteran pest Spodoptera exigua by ingestion of bacterial expressing dsRNA of a non-midgut gene. PLoS One 4:e6225 (2009).
Yang J and Han Z, Efficiency of different methods for dsRNA delivery in Cotton Bollworm (Helicoverpa armigera). J Integr Agric 13:115-123 (2014).
Ganbaatar O, Cao B, Zhang Y, Bao D, Bao W and Wuriyanghan H, Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol 17:1-11 (2017).
Urbaneja A, Desneux N, Gabarra JA, Gonzalez-Cabrera L, Mafra-Neto J, Stoltman A et al., Biology, ecology and management of the South American tomato pinworm, Tuta absoluta, in Potential Invasive Pest of Agricultural Crops, ed. by Peña J. CABI, Boston, MA, pp. 98-125 (2013).
Camargo RA, Herai RH, Santos LN, Bento FMM, Lima JE, Marques-Souza H et al., De Novo transcriptome assembly and analysis to potential gene targets for RNAi-mediated control of the tomato leafminer (Tuta absoluta). BMC Genomics 16:1-17 (2015).
Camargo RA, Barbosa GO, Possignolo IP, Peres LEP, Lam E, Lima JE et al., RNA interference as a gene silencing tool to control Tuta absoluta in tomato (Solanum lycopersicum). PeerJ 4:e2673 (2016).
Bajonero JG and Parra JRP, Selection and suitability of an artificial diet for Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) based on physical and chemical characteristics. J Insect Sci 17:1-8 (2017).
Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M and Robles M, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676 (2005).
Corpet F, Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881-10890 (1988).
Rozen S and Skaletsky HJ, Primer3 on the WWW for general users and for biologist programmers, in Bioinformatics Methods and Protocols: Methods in Molecular Biology, ed. by Krawetz S and Misener S. Humana Press, Totowa, NJ, pp. 365-386 (2000).
Evangelista CCS, Borges G and Pereira TC, Desenho racional de dsRNA, in Introdução à técnica de Interferência por RNA-RNAi, ed. by Pereira TC. Cubo, Ribeirão Preto, pp. 76-80 (2013).
Bachman PM, Bolognesi R, Moar WJ, Mueller GM, Paradise MS, Ramaseshadri P et al., Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western corn rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res 22:1207-1222 (2013).
Zhang X, Liu X, Ma J and Zhao J, Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Bull Entomol Res 103:584-591 (2013).
Timmons L, Court DL and Fire A, Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103-112 (2001).
Nwokeojia AO, Kunga AW, Kilbyb PM, Portwoodb DE and Dickmana MJ, Purification and characterisation of dsRNA using ion pair reversephase chromatography and mass spectrometry. J Chromatogr A 1484:14-25 (2018).
McCullagh P and Nelder J, Monographs on Statistics and Applied Probability. Chapman & Hall, London (1989).
Moral RA, Hinde J and Demétrio CGB, Half-normal plots and overdispersed models in R: the hnp package. J Stat Softw 81:1-23 (2017).
R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2017). [Online]. Available: http://www.R-project.org. [accessed 23 October 2018].
Livak KJ and Schmittgen TD, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402-408 (2001).
Chandra GS, Asokan R, Manamohan M, Kumar NKK and Sitac T, Evaluation of reference genes for quantitative real time PCR normalization in Cotton Bollworm Helicoverpa armigera. Mol Biol 48:813-822 (2014).
Ridgeway JA and Timm AE, Reference gene selection for quantitative real-time PCR normalization in larvae of three species of Grapholitini (Lepidoptera: Tortricidae). PLoS One 10:e0129026 (2015).
Andersen CL, Jensen JL and Orntoft TF, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245-5250 (2004).
Fishilevich E, Vélez AM, Storer NP, Li H, Bowling AJ, Rangasamy M et al., RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Manag Sci 72:1652-1663 (2016).
Wu S, Zhang X, He Y, Shuai J, Chen X and Ling E, Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev Comp Immunol 34:1191-1198 (2010).
Vieira C, Waniek P, Mattos D, Castro D, Mello C, Ratcliffe N et al., Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit Vectors 7:232 (2014).
Klowden MJ, Endocrine systems, in Physiological Systems in Insects, 2nd edn, ed. by Klowden MJ. Academic, Burlington, MA, pp. 1-49 (2007).
Minakuchi C, Namiki T and Shinoda T, Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol 325:341-350 (2009).
Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X et al., Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15:1204-1213 (2017).
Shi J, Mu L, Chen X, Guo W and Li G, RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int J Biol Sci 12:1319-1331 (2016).
Jin S, Singh ND, Li L, Zhang X and Daniell H, Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435-446 (2015).
Celorio-Mancera MP, Ahn SJ, Vogel H and Heckel DG, Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera. BMC Genomics 12:1-16 (2011).
Vaughan A and Hemingway J, Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J Biol Chem 14:17044-17049 (1995).
Karunaratne SHPP, Small GJ and Hemingway J, Characterization of the elevated esterase-associated insecticide resistance mechanism in Nilaparvata lugens (Stal) and other planthopper species. Int J Pest Manag 45:225-230 (1999).
Bizzaro D, Mazzoni E, Giannini S, Cassanelli S and Manicardi GC, Relationship among expression, amplification, and methylation of FE4 esterase genes in Italian populations of Myzus persicae (Sulzer) (Homoptera: Aphididae). Pestic Biochem Physiol 81:51-58 (2005).
Gong YH, Yu XR, Shang QL, Shi XY and Gao XW, Oral delivery mediated RNA interference of a carboxylesterase gene results in reduced resistance to organophosphorus insecticides in the cotton aphid, Aphis gossypii Glover. PLoS One 9:e102823 (2014).
Xu L, Duan X, Lv Y, Zhang X, Nie Z, Xie C et al., Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides. Transgenic Res 23:389-396 (2014).
Siqueira HAA, Guedes RNC and Picanço MC, Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agric For Entomol 2:147-153 (2000).
Siqueira HAA, Guedes RNC, Fragoso DB and Magalhães LC, Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247-251 (2001).
Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF and Guedes RNC, Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67:913-920 (2011).
Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K et al., Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 42:506-513 (2012).
Gontijo PC, Picanço MC, Pereira EJG, Martins JC, Chediak M and Guedes RNC, Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Ann Appl Biol 162:50-59 (2012).
Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, Guedes RNC et al., Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS One 9:e103235 (2014).
Silva JE, Assis CPO, Ribeiro LMS and Siqueira HAA, Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. J Econ Entomol 109:2190-2195 (2016).
Zhao Y, Yang G, Wang-Pruski G and You M, Phyllotreta striolata (Coleoptera:Chrysomelidae): arginine kinase cloning and RNAi-based pest control. Eur J Entomol 105:815-822 (2008).
Bragg J, Rajkovic A, Anderson C, Curtis R, Van Houten J, Begres B et al., Identification and characterization of a putative arginine kinase homolog from Myxococcus xanthus required for fruiting body formation and cell differentiation. J Bacteriol 194:2668-2676 (2012).
Bachman PM, Huizinga KM, Jensen PD, Mueller G, Tan J, Uffman JP et al., Ecological risk assessment for DvSnf7 RNA: a plant-incorporated protectant with targeted activity against Western corn rootworm. Regul Toxicol Pharmacol 81:77-88 (2016).
Zhang X, Zhang J and Zhu KY, Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683-693 (2010).
Abrieux A and Chiu JC, Oral delivery of dsRNA by microbes: beyond pest control. Commun Integr Biol 9:e1236163 (2016).
Murphy KA, Tabuloc CA, Cervantes KR and Chiu JC, Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587 (2016).
Whitten MMA, Facey PD, Del Sol R, Fernandez-Martınez LT, Evans MC, Mitchell JJ et al., Symbiont-mediated RNA interference in insects. Proc R Soc B 283:20160042 (2016).
Whitten MMA and Dyson P, Gene silencing in non-model insects: overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Bioessays 39:1600247 (2017).
Quecine MC, Araújo WL, Tsui S, Parra JRP, Azevedo JL and Pizzirani-Kleiner AA, Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Arch Microbiol 196:227-234 (2014).
معلومات مُعتمدة: 141030/2015-1 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 2011/12869-6 Fundação de Amparo à Pesquisa do Estado de São Paulo
فهرسة مساهمة: Keywords: Escherichia coli HT115(DE3); Solanum lycopersicum; bacteria dsRNA delivery; reference genes
المشرفين على المادة: 0 (RNA, Double-Stranded)
تواريخ الأحداث: Date Created: 20190618 Date Completed: 20200316 Latest Revision: 20221207
رمز التحديث: 20231215
DOI: 10.1002/ps.5513
PMID: 31207074
قاعدة البيانات: MEDLINE