دورية أكاديمية

A novel 3'-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.

التفاصيل البيبلوغرافية
العنوان: A novel 3'-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.
المؤلفون: Falconi M; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Giangrossi M; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Zabaleta ME; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Wang J; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Gambini V; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Tilio M; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Bencardino D; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Occhipinti S; Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy., Belletti B; Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy., Laudadio E; Dipartimento Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, Ancona, Italy., Galeazzi R; Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy., Marchini C; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy., Amici A; School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2019 Dec; Vol. 33 (12), pp. 13228-13240. Date of Electronic Publication: 2019 Sep 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: Breast Neoplasms/*metabolism , Phosphoproteins/*metabolism , RNA, Transfer, Glu/*metabolism , RNA-Binding Proteins/*metabolism, Animals ; Blotting, Western ; Breast Neoplasms/genetics ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation, Neoplastic/genetics ; Gene Expression Regulation, Neoplastic/physiology ; Humans ; Mice ; Mice, Transgenic ; Phosphoproteins/genetics ; RNA, Transfer, Glu/genetics ; RNA-Binding Proteins/genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Nucleolin
مستخلص: tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNA Glu , that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.
References: Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S., Demeter, J., Perou, C. M., L⊘nning, P. E., Brown, P. O., B⊘rresen-Dale, A. L., and Botstein, D. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418-8423.
Calin, G. A. (2019) The noncoding RNA revolution-three decades and still going strong! Mol. Oncol. 13, 3.
Yuan, Y., and Weidhaas, J. B. (2019) Functional microRNA binding site variants. Mol. Oncol. 13, 4-8.
Raina, M., and Ibba, M. (2014) tRNAs as regulators of biological processes. Front. Genet. 5, 171.
Anderson, P., and Ivanov, P. (2014) tRNA fragments in human health and disease. FEBS Lett. 588, 4297-4304.
Romano, G., Veneziano, D., Acunzo, M., and Croce, C. M. (2017) Small non-coding RNA and cancer. Carcinogenesis 38, 485-491.
Li, S., Xu, Z., and Sheng, J. (2018) tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes (Basel) 9, E246.
Kuscu, C., Kumar, P., Kiran, M., Su, Z., Malik, A., and Dutta, A. (2018) tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 24, 1093-1105.
Vojtech, L., Woo, S., Hughes, S., Levy, C., Ballweber, L., Sauteraud, R. P., Strobl, J., Westerberg, K., Gottardo, R., Tewari, M., and Hladik, F. (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 42, 7290-7304.
Huang, X., Yuan, T., Tschannen, M., Sun, Z., Jacob, H., Du, M., Liang, M., Dittmar, R. L., Liu, Y., Liang, M., Kohli, M., Thibodeau, S. N., Boardman, L., and Wang, L. (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14, 319.
Mongelard, F., and Bouvet, P. (2007) Nucleolin: a multiFACeTed protein. Trends Cell Biol. 17, 80-86.
Jia, W., Yao, Z., Zhao, J., Guan, Q., and Gao, L. (2017) New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 186, 1-10.
Pichiorri, F., Palmieri, D., De Luca, L., Consiglio, J., You, J., Rocci, A., Talabere, T., Piovan, C., Lagana, A., Cascione, L., Guan, J., Gasparini, P., Balatti, V., Nuovo, G., Coppola, V., Hofmeister, C. C., Marcucci, G., Byrd, J. C., Volinia, S., Shapiro, C. L., Freitas, M. A., and Croce, C. M. (2013) In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J. Exp. Med. 210, 951-968; erratum: 214, 1557.
Berger, C. M., Gaume, X., and Bouvet, P. (2015) The roles of nucleolin subcellular localization in cancer. Biochimie 113, 78-85.
Abdelmohsen, K., Tominaga, K., Lee, E. K., Srikantan, S., Kang, M. J., Kim, M. M., Selimyan, R., Martindale, J. L., Yang, X., Carrier, F., Zhan, M., Becker, K. G., and Gorospe, M. (2011) Enhanced translation by nucleolin via G-rich elements in coding and non-coding regions of target mRNAs. Nucleic Acids Res. 39, 8513-8530.
Zhang, J., Tsaprailis, G., and Bowden, G. T. (2008) Nucleolin stabilizes Bcl-X L messenger RNA in response to UVA irradiation. Cancer Res. 68, 1046-1054.
Takagi, M., Absalon, M. J., McLure, K. G., and Kastan, M. B. (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123, 49-63.
Chen, J., Guo, K., and Kastan, M. B. (2012) Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J. Biol. Chem. 287, 16467-16476.
Andreani, C., Bartolacci, C., Wijnant, K., Crinelli, R., Bianchi, M., Magnani, M., Hysi, A., Iezzi, M., Amici, A., and Marchini, C. (2017) Resveratrol fuels HER2 and ERα-positive breast cancer behaving as proteasome inhibitor. Aging (Albany N. Y.) 9, 508-523.
Tilio, M., Gambini, V., Wang, J., Garulli, C., Kalogris, C., Andreani, C., Bartolacci, C., Elexpuru Zabaleta, M., Pietrella, L., Hysi, A., Iezzi, M., Belletti, B., Orlando, F., Provinciali, M., Galeazzi, R., Marchini, C., and Amici, A. (2016) Irreversible inhibition of Δ16HER2 is necessary to suppress Δ16HER2-positive breast carcinomas resistant to Lapatinib. Cancer Lett. 381, 76-84.
Kalogris, C., Garulli, C., Pietrella, L., Gambini, V., Pucciarelli, S., Lucci, C., Tilio, M., Zabaleta, M. E., Bartolacci, C., Andreani, C., Giangrossi, M., Iezzi, M., Belletti, B., Marchini, C., and Amici, A. (2014) Sanguinarine suppresses basal-like breast cancer growth through dihydrofolate reductase inhibition. Biochem. Pharmacol. 90, 226-234.
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015) The I-TASSER suite: protein structure and function prediction. Nat. Methods 12, 7-8.
Fiser, A., and Sali, A. (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19, 2500-2501.
Shin, W.-H., Lee, G. R., Heo, L., Lee, H., and Seok, C. (2014) Prediction of protein structure and interactions by Galaxy protein modelling programs. Bio Design 2, 1-11.
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19-25.
Marchini, C., Gabrielli, F., Iezzi, M., Zenobi, S., Montani, M., Pietrella, L., Kalogris, C., Rossini, A., Ciravolo, V., Castagnoli, L., Tagliabue, E., Pupa, S. M., Musiani, P., Monaci, P., Menard, S., and Amici, A. (2011) The human splice variant Δ16HER2 induces rapid tumor onset in a reporter transgenic mouse. PLoS One 6, e18727.
Bartolacci, C., Andreani, C., Curcio, C., Occhipinti, S., Massaccesi, L., Giovarelli, M., Galeazzi, R., Iezzi, M., Tilio, M., Gambini, V., Wang, J., Marchini, C., and Amici, A. (2018) Phage-based anti-HER2 vaccination can circumvent immune tolerance against breast cancer. Cancer Immunol. Res. 6, 1486-1498; erratum: 7, 526.
Segatto, I., Zompit, M. M., Citron, F., D'Andrea, S., Vinciguerra, G. L. R., Perin, T., Berton, S., Mungo, G., Schiappacassi, M., Marchini, C., Amici, A., Vecchione, A., Baldassarre, G., and Belletti, B. (2019) Stathmin is required for normal mouse mammary gland development and Δ16HER2-driven tumorigenesis. Cancer Res. 79, 397-409.
Roberts, T. C., Coenen-Stass, A. M., and Wood, M. J. (2014) Assessment of RT-qPCR normalization strategies for accurate quantification of extracellular microRNAs in murine serum. PLoS One 9, e89237.
Li, Y., and Kowdley, K. V. (2012) Method for microRNA isolation from clinical serum samples. Anal. Biochem. 431, 69-75.
Magnus, M., Boniecki, M. J., Dawson, W., and Bujnicki, J. M. (2016) SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res. 44, W315-W319.
Ghisolfi-Nieto, L., Joseph, G., Puvion-Dutilleul, F., Amalric, F., and Bouvet, P. (1996) Nucleolin is a sequence-specific RNA-binding protein: characterization of targets on pre-ribosomal RNA. J. Mol. Biol. 260, 34-53.
Lacroix, M., Toillon, R. A., and Leclercq, G. (2006) p53 and breast cancer, an update. Endocr. Relat. Cancer 13, 293-325.
He, G., Siddik, Z. H., Huang, Z., Wang, R., Koomen, J., Kobayashi, R., Khokhar, A. R., and Kuang, J. (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24, 2929-2943.
Sun, C., Fu, Z., Wang, S., Li, J., Li, Y., Zhang, Y., Yang, F., Chu, J., Wu, H., Huang, X., Li, W., and Yin, Y. (2018) Roles of tRNA-derived fragments in human cancers. Cancer Lett. 414, 16-25.
Kurzynska-Kokorniak, A., Koralewska, N., Pokornowska, M., Urbanowicz, A., Tworak, A., Mickiewicz, A., and Figlerowicz, M. (2015) The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res. 43, 4365-4380.
Cole, C., Sobala, A., Lu, C., Thatcher, S. R., Bowman, A., Brown, J. W., Green, P. J., Barton, G. J., and Hutvagner, G. (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147-2160.
Ahmed, F., Kaundal, R., and Raghava, G. P. S. (2013) PHDcleav: a SVM based method for predicting human Dicer cleavage sites using sequence and secondary structure of miRNA precursors. BMC Bioinformatics 14, S9.
Grelier, G., Voirin, N., Ay, A. S., Cox, D. G., Chabaud, S., Treilleux, I., Léon-Goddard, S., Rimokh, R., Mikaelian, I., Venoux, C., Puisieux, A., Lasset, C., and Moyret-Lalle, C. (2009) Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br. J. Cancer 101, 673-683.
Karube, Y., Tanaka, H., Osada, H., Tomida, S., Tatematsu, Y., Yanagisawa, K., Yatabe, Y., Takamizawa, J., Miyoshi, S., Mitsudomi, T., and Takahashi, T. (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111-115.
Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., Urbauer, D., Pennacchio, L. A., Cheng, J. F., Nick, A. M., Deavers, M. T., Mourad-Zeidan, A., Wang, H., Mueller, P., Lenburg, M. E., Gray, J. W., Mok, S., Birrer, M. J., Lopez-Berestein, G., Coleman, R. L., Bar-Eli, M., and Sood, A. K. (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N. Engl. J. Med. 359, 2641-2650.
Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., and Lyko, F. (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590-1595.
Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T. K., Bandyopadhyay, S., Reuben, A., Fernandes, D. J., and Spicer, E. K. (2010) Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J. Biol. Chem. 285, 27182-27191.
Otake, Y., Soundararajan, S., Sengupta, T. K., Kio, E. A., Smith, J. C., Pineda-Roman, M., Stuart, R. K., Spicer, E. K., and Fernandes, D. J. (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109, 3069-3075.
Balatti, V., Nigita, G., Veneziano, D., Drusco, A., Stein, G. S., Messier, T. L., Farina, N. H., Lian, J. B., Tomasello, L., Liu, C. G., Palamarchuk, A., Hart, J. R., Bell, C., Carosi, M., Pescarmona, E., Perracchio, L., Diodoro, M., Russo, A., Antenucci, A., Visca, P., Ciardi, A., Harris, C. C., Vogt, P. K., Pekarsky, Y., and Croce, C. M. (2017) tsRNA signatures in cancer. Proc. Natl. Acad. Sci. USA 114, 8071-8076.
Maute, R. L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., and Dalla-Favera, R. (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl. Acad. Sci. USA 110, 1404-1409.
Huang, B., Yang, H., Cheng, X., Wang, D., Fu, S., Shen, W., Zhang, Q., Zhang, L., Xue, Z., Li, Y., Da, Y., Yang, Q., Li, Z., Liu, L., Qiao, L., Kong, Y., Yao, Z., Zhao, P., Li, M., and Zhang, R. (2017) tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res. 77, 3194-3206.
Schorn, A. J., Gutbrod, M. J., LeBlanc, C., and Martienssen, R. (2017) LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61-71.e11.
Kim, H. K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., Roy-Chaudhuri, B., Li, P., Xu, J., Chu, K., Zhang, F., Chua, M. S., So, S., Zhang, Q. C., Sarnow, P., and Kay, M. A. (2017) A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552, 57-62.
Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P., and Anderson, P. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613-623.
Gebetsberger, J., Wyss, L., Mleczko, A. M., Reuther, J., and Polacek, N. (2017) AtRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 14, 1364-1373.
Goodarzi, H., Liu, X., Nguyen, H. C., Zhang, S., Fish, L., and Tavazoie, S. F. (2015) Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790-802.
Sambrook, J., and Russell, D. W. (2001) Molecular Cloning. A Laboratory Manual, CSHL Press, Cold Spring Harbor, NY, USA.
فهرسة مساهمة: Keywords: HER2; RNA-protein interaction; p53 protein; small noncoding RNAs
المشرفين على المادة: 0 (Phosphoproteins)
0 (RNA, Transfer, Glu)
0 (RNA-Binding Proteins)
تواريخ الأحداث: Date Created: 20190928 Date Completed: 20200608 Latest Revision: 20231213
رمز التحديث: 20240628
DOI: 10.1096/fj.201900382RR
PMID: 31560576
قاعدة البيانات: MEDLINE