دورية أكاديمية

Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation.

التفاصيل البيبلوغرافية
العنوان: Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation.
المؤلفون: Lombardi AA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Gibb AA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Arif E; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Kolmetzky DW; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Tomar D; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Luongo TS; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Jadiya P; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Murray EK; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA., Lorkiewicz PK; Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA., Hajnóczky G; Department of Pathology Anatomy and Cell Biology, MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Thomas Jefferson University, Philadelphia, PA, 19107, USA., Murphy E; Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA., Arany ZP; Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA., Kelly DP; Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA., Margulies KB; Translational Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA., Hill BG; Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville, Louisville, KY, 40202, USA., Elrod JW; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. elrod@temple.edu.
المصدر: Nature communications [Nat Commun] 2019 Oct 04; Vol. 10 (1), pp. 4509. Date of Electronic Publication: 2019 Oct 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Calcium Signaling/*physiology , Cell Differentiation/*genetics , Epigenesis, Genetic/*physiology , Myocardial Infarction/*pathology , Myofibroblasts/*physiology, Animals ; Calcium Channels/genetics ; Calcium Channels/metabolism ; Calcium-Binding Proteins/metabolism ; DNA Methylation/physiology ; Disease Models, Animal ; Embryo, Mammalian ; Epigenome ; Female ; Fibrosis ; Glycolysis/physiology ; Humans ; Ketoglutaric Acids/metabolism ; Mice ; Mice, Knockout ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/metabolism ; Mitochondrial Proteins/genetics ; Mitochondrial Proteins/metabolism ; Myocardial Infarction/diagnostic imaging ; Myocardial Infarction/etiology ; Myocardium/cytology ; Myocardium/pathology ; Primary Cell Culture
مستخلص: Fibroblast to myofibroblast differentiation is crucial for the initial healing response but excessive myofibroblast activation leads to pathological fibrosis. Therefore, it is imperative to understand the mechanisms underlying myofibroblast formation. Here we report that mitochondrial calcium ( m Ca 2+ ) signaling is a regulatory mechanism in myofibroblast differentiation and fibrosis. We demonstrate that fibrotic signaling alters gating of the mitochondrial calcium uniporter (mtCU) in a MICU1-dependent fashion to reduce m Ca 2+ uptake and induce coordinated changes in metabolism, i.e., increased glycolysis feeding anabolic pathways and glutaminolysis yielding increased α-ketoglutarate (αKG) bioavailability. m Ca 2+ -dependent metabolic reprogramming leads to the activation of αKG-dependent histone demethylases, enhancing chromatin accessibility in loci specific to the myofibroblast gene program, resulting in differentiation. Our results uncover an important role for the mtCU beyond metabolic regulation and cell death and demonstrate that m Ca 2+ signaling regulates the epigenome to influence cellular differentiation.
References: Nature. 2004 Jan 22;427(6972):360-4. (PMID: 14737170)
J Biol Chem. 2016 Jun 24;291(26):13634-48. (PMID: 27151219)
Nat Rev Cardiol. 2017 Aug;14(8):484-491. (PMID: 28436487)
Cell. 1995 Aug 11;82(3):415-24. (PMID: 7634331)
Cell Rep. 2015 Jul 7;12(1):23-34. (PMID: 26119731)
Nat Commun. 2013;4:2035. (PMID: 23792809)
Trends Biochem Sci. 2014 Aug;39(8):347-54. (PMID: 25037503)
Stem Cells. 2015 Aug;33(8):2613-27. (PMID: 25917428)
Cold Spring Harb Symp Quant Biol. 2011;76:211-6. (PMID: 22096029)
Mol Cancer Ther. 2014 Apr;13(4):890-901. (PMID: 24523301)
Mol Cell. 2014 Jan 9;53(1):49-62. (PMID: 24289921)
Nat Commun. 2017 May 22;8:14634. (PMID: 28530221)
Biochim Biophys Acta. 2009 Nov;1787(11):1334-41. (PMID: 19481532)
J Mol Cell Cardiol. 2014 May;70:9-18. (PMID: 24189039)
J Mol Cell Cardiol. 2015 Jan;78:35-45. (PMID: 25450609)
Cell Metab. 2015 Mar 3;21(3):392-402. (PMID: 25738455)
Biochem J. 1972 Jun;128(1):161-3. (PMID: 4343661)
Cell Metab. 2008 Jan;7(1):11-20. (PMID: 18177721)
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50. (PMID: 18032601)
Am J Respir Crit Care Med. 2015 Dec 15;192(12):1462-74. (PMID: 26284610)
Cell. 2002 Apr;109 Suppl:S67-79. (PMID: 11983154)
Nature. 2011 Jun 19;476(7360):336-40. (PMID: 21685888)
Cell. 2012 Oct 26;151(3):630-44. (PMID: 23101630)
Nat Cell Biol. 2013 Dec;15(12):1464-72. (PMID: 24212091)
Biochemistry. 2012 Apr 10;51(14):2959-73. (PMID: 22443365)
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4388-4393. (PMID: 28396416)
Nucleic Acids Res. 2018 Apr 20;46(7):3351-3365. (PMID: 29438503)
Biochim Biophys Acta. 2009 Nov;1787(11):1309-16. (PMID: 19413950)
Circ Res. 2010 Dec 10;107(12):1445-53. (PMID: 20966393)
Cell Metab. 2012 Jan 4;15(1):110-21. (PMID: 22225880)
J Biol Chem. 2003 Jul 4;278(27):24461-8. (PMID: 12711600)
Nat Rev Endocrinol. 2015 Apr;11(4):242-52. (PMID: 25666495)
Circulation. 2017 Aug 8;136(6):549-561. (PMID: 28356446)
J Biol Chem. 1992 Mar 5;267(7):4416-23. (PMID: 1339450)
Nucleic Acids Res. 2015 Jul 1;43(W1):W566-70. (PMID: 25969447)
Science. 2011 Sep 30;333(6051):1888-91. (PMID: 21903779)
J Biol Chem. 1997 Sep 19;272(38):23597-605. (PMID: 9295299)
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8674-9. (PMID: 21555572)
Nat Commun. 2016 Jul 22;7:12260. (PMID: 27447449)
J Mol Cell Cardiol. 2013 Jan;54:45-52. (PMID: 23142541)
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18439-44. (PMID: 18003914)
Cell. 2007 May 18;129(4):823-37. (PMID: 17512414)
Nat Methods. 2013 Dec;10(12):1213-8. (PMID: 24097267)
Trends Biochem Sci. 2011 Jan;36(1):7-18. (PMID: 20728359)
Cell Metab. 2013 Jun 4;17(6):976-987. (PMID: 23747253)
Nat Commun. 2016 Mar 09;7:10955. (PMID: 26956930)
J Clin Invest. 2014 Jul;124(7):2921-34. (PMID: 24937432)
Cell Metab. 2016 Sep 13;24(3):485-493. (PMID: 27476976)
Mol Cell. 2014 Mar 6;53(5):726-37. (PMID: 24560927)
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1872-80. (PMID: 26976564)
Nat Rev Cardiol. 2010 Jan;7(1):30-7. (PMID: 19949426)
Circ Res. 2010 Mar 19;106(5):992-1003. (PMID: 20075334)
J Biol Chem. 2000 May 5;275(18):13571-9. (PMID: 10788473)
Nature. 2017 May 4;545(7652):93-97. (PMID: 28445457)
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1303-12. (PMID: 18653477)
EMBO Rep. 2014 Mar;15(3):299-307. (PMID: 24503055)
J Mol Cell Cardiol. 2016 Aug;97:153-61. (PMID: 27167848)
Cell Rep. 2017 Mar 7;18(10):2291-2300. (PMID: 28273446)
Nat Rev Mol Cell Biol. 2002 May;3(5):349-63. (PMID: 11988769)
Nat Rev Cancer. 2016 Oct;16(10):619-34. (PMID: 27492215)
Nature. 2011 Jun 19;476(7360):341-5. (PMID: 21685886)
Nature. 2015 Feb 19;518(7539):413-6. (PMID: 25487152)
Nature. 2014 Oct 30;514(7524):585-90. (PMID: 25317562)
Cell Tissue Res. 2005 Jan;319(1):103-19. (PMID: 15503148)
Development. 2012 Aug;139(15):2681-91. (PMID: 22782721)
J Biol Chem. 2015 Oct 16;290(42):25427-38. (PMID: 26318453)
Dev Cell. 2012 Oct 16;23(4):705-15. (PMID: 23022034)
Nat Med. 2012 Jul 06;18(7):1028-40. (PMID: 22772564)
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10479-86. (PMID: 23759742)
معلومات مُعتمدة: R01 HL058493 United States HL NHLBI NIH HHS; P01 HL134608 United States HL NHLBI NIH HHS; R01 HL147844 United States HL NHLBI NIH HHS; R01 HL136954 United States HL NHLBI NIH HHS; R01 HL142271 United States HL NHLBI NIH HHS; R01 HL142864 United States HL NHLBI NIH HHS; R01 HL123966 United States HL NHLBI NIH HHS; R01 HL130174 United States HL NHLBI NIH HHS
المشرفين على المادة: 0 (Calcium Channels)
0 (Calcium-Binding Proteins)
0 (Ketoglutaric Acids)
0 (MICU1 protein, mouse)
0 (Mcu protein, mouse)
0 (Mitochondrial Membrane Transport Proteins)
0 (Mitochondrial Proteins)
تواريخ الأحداث: Date Created: 20191006 Date Completed: 20200214 Latest Revision: 20240421
رمز التحديث: 20240421
مُعرف محوري في PubMed: PMC6778142
DOI: 10.1038/s41467-019-12103-x
PMID: 31586055
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-019-12103-x