دورية أكاديمية

Proximity effects in graphene and ferromagnetic CrBr 3 van der Waals heterostructures.

التفاصيل البيبلوغرافية
العنوان: Proximity effects in graphene and ferromagnetic CrBr 3 van der Waals heterostructures.
المؤلفون: Behera SK; Department of Physics, Tezpur University (Central University), Tezpur-784028, India. pdeb@tezu.ernet.in., Bora M, Paul Chowdhury SS, Deb P
المصدر: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2019 Nov 27; Vol. 21 (46), pp. 25788-25796.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 100888160 Publication Model: Print Cited Medium: Internet ISSN: 1463-9084 (Electronic) Linking ISSN: 14639076 NLM ISO Abbreviation: Phys Chem Chem Phys Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Cambridge [England] : Royal Society of Chemistry, c1999-
مستخلص: Herein, we report first-principles calculations for the magnetic proximity effect in a van der Waals heterostructure formed by a graphene monolayer, induced by its interaction with a two-dimensional (2D) ferromagnet (chromium tribromide, CrBr3). We observed that the magnetic proximity effect arising from the spin-dependent interlayer coupling depends on the interlayer electronic configuration. The proximity effect results in the spin polarization of the graphene orbital by up to 63.6%, together with a miniband splitting of about 73.4 meV, and 8% enhancement in the magnetic moment (3.47 μB per cell) in the heterostructure. The position of the Fermi level in the Dirac cone is shown to depend strongly on the graphene-CrBr3 interlayer separation of 3.77 Å. Consequently, we also show that a perpendicular electric field can be used to control the miniband spin splitting and transmission spectrum. Also, the interfacial polarization effect due to the existence of two different constituents reinforces the conductivity via electrostatic screening in the heterolayer. These findings point towards the application potential of this unique system in nanoscale devices, where the electric field-driven magnetic proximity effect can lead to spin controllability and possible engineering of spin gating.
تواريخ الأحداث: Date Created: 20191116 Date Completed: 20191127 Latest Revision: 20200108
رمز التحديث: 20240829
DOI: 10.1039/c9cp05252f
PMID: 31728470
قاعدة البيانات: MEDLINE
الوصف
تدمد:1463-9084
DOI:10.1039/c9cp05252f