دورية أكاديمية

Electrospray ionization tandem mass spectrometry of monoketone curcuminoids.

التفاصيل البيبلوغرافية
العنوان: Electrospray ionization tandem mass spectrometry of monoketone curcuminoids.
المؤلفون: Vieira TM; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil., Orenha RP; Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, CEP 14404-600, Franca, SP, Brazil., Crevelin EJ; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil., Furtado SSP; Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, CEP 14404-600, Franca, SP, Brazil., Vessecchi R; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil., Parreira RLT; Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, CEP 14404-600, Franca, SP, Brazil., Crotti AEM; Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
المصدر: Rapid communications in mass spectrometry : RCM [Rapid Commun Mass Spectrom] 2020 Sep; Vol. 34 Suppl 3, pp. e8699. Date of Electronic Publication: 2020 Feb 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley And Sons Ltd Country of Publication: England NLM ID: 8802365 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0231 (Electronic) Linking ISSN: 09514198 NLM ISO Abbreviation: Rapid Commun Mass Spectrom Subsets: MEDLINE
أسماء مطبوعة: Publication: Chichester : John Wiley And Sons Ltd
Original Publication: London, UK : Heyden, c1987-
مواضيع طبية MeSH: Diarylheptanoids/*chemistry, Chemical Fractionation ; Deuterium Exchange Measurement ; Diarylheptanoids/chemical synthesis ; Ions/chemistry ; Molecular Structure ; Spectrometry, Mass, Electrospray Ionization/methods ; Tandem Mass Spectrometry/methods
مستخلص: Rationale: Although monoketone curcuminoids (MKCs) have been largely investigated due to their biological activities, data on the gas-phase fragmentation reactions of protonated MKCs under collision-induced dissociation (CID) conditions are still scarce. Here, we combined electrospray ionization tandem mass spectrometry (ESI-MS/MS) data, multiple-stage mass spectrometry (MS n ), deuterium exchange experiments, accurate-mass data, and thermochemical data estimated by computational chemistry to elucidate and to rationalize the fragmentation pathways of eleven synthetic MKCs.
Methods: The MKCs were synthesized by Claisen-Schmidt condensation under basic (1-9) or acidic (10-11) conditions. ESI-CID-MS/MS analyses and deuterium-exchange experiments were carried out on a triple quadrupole mass spectrometer. MS n analyses on an ion trap mass spectrometer helped to elucidate the fragmentation pathways. Accurate-mass data and thermochemical data, obtained at the B3LYP/6-31+G(d,p) level of theory, were used to support the ion structures.
Results: The most intense product ions were the benzyl ions ([C 7 H 2 R 1 R 2 R 3 R 4 R 5 ] + ) and the acylium ions ([M + H - C 8 H 3 R 1 R 2 R 3 R 4 R 5 ] + ), which originated directly from the precursor ion as a result of two competitive hydrogen rearrangements. Product ions [M + H - H 2 O] + and [M + H - C 6 HR 1 R 2 R 3 R 4 R 5 ] + , which are formed after Nazarov cyclization, were also common to all the analyzed compounds. In addition, •Br and •Cl eliminations were diagnostic for the presence of these halogen atoms at the aromatic ring, whereas •CH 3 eliminations were useful to identify the methyl and methoxy groups attached to this same ring. Nazarov cyclization in the gas phase occurred for all the investigated MKCs and did not depend on the presence of the hydroxyl group at the aromatic ring. However, the presence and the position of a hydroxyl group at the aromatic rings played a key role in the Nazarov cyclization mechanism.
Conclusions: Our results reinforce some aspects of the fragmentation pathways previously published for 1,5-bis-(2-methoxyphenyl)-1,4-pentadien-3-one and 1,5-bis-(2-hydroxyphenyl)-1,4-pentadien-3-one. The alternative fragmentation mechanism proposed herein can explain the fragmentation of a wider diversity of monoketone curcuminoids.
(© 2019 John Wiley & Sons, Ltd.)
References: Liang G, Li X, Chen L, et al. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin. Bioorg Med Chem Lett. 2008;18(4):1525-1529. https://doi.org/10.1016/j.bmcl.2007.12.068.
Zamrus SNH, Akhtar MN, Yeap SK, et al. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDA-MB-231 cancer cell lines. Chem Cent J. 2018;12(1):1-10. https://doi.org/10.1186/s13065-018-0398-1.
Park SJ, Garcia CV, Shin GH, Kim JT. Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chem. 2018;12:25151-25157. https://doi.org/10.1016/j.foodchem.2018.01.071.
Vieira TM, Santos IA, Silva TS, Martins CHG, Crotti AEM. Antimicrobial activity of monoketone curcuminoids against cariogenic bacteria. Chem Biodivers. 2018;15(8):5-12. https://doi.org/10.1002/cbdv.201800216.
Ud Din Z, Fill TP, de Assis FF, et al. Unsymmetrical 1,5-diaryl-3-oxo-1,4-pentadienyls and their evaluation as antiparasitic agents. Bioorg Med Chem. 2013;22(3):1121-1127. https://doi.org/10.1016/j.bmc.2013.12.020.
Kumari N, Kulkarni A, Lin X, et al. Inhibition of HIV-1 by curcumin a, a novel curcumin analog. Drug des Devel Ther. 2015;2015(9):5051-5060. https://doi.org/10.2147/DDDT.S86558.
Carrão DB, Albuquerque NCP, Marques LMM, et al. In vitro metabolism of artepillin C by rat and human liver microsomes. Planta Med. 2017;83(8):737-745. https://doi.org/10.1055/s-0042-124359.
Demarque DP, Crotti AEM, Vessecchi R, Lopes JL, Lopes NP. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat Prod Rep. 2016;33(3):432-455. https://doi.org/10.1039/c5np00073d.
Jiang H, Somogyi Á, Jacobsen NE, Timmermann BN, Gang DR. Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(6):1001-1012. https://doi.org/10.1002/rcm.2401.
Ostrowski W, Sniecikowska L, Hoffmann M, Franski R. Demethoxycurcumin-metal complexes: Fragmentation and comparison, with curcumin-metal complexes, as studied by ESI-MS/MS. J Spectros. 2013;2913(8): 1-8. https://doi.org/10.1155/2013/749641.
Cyriac J, Paulose J, George M, et al. The role of methoxy group in the Nazarov cyclization of 1,5-bis-(2-methoxyphenyl)-1,4-pentadien-3-one in the gas phase and condensed phase. J Am Soc Mass Spectrom. 2014;25(3):398-409. https://doi.org/10.1007/s13361-013-0785-8.
George M, Sebastian VS, Reddy PN, Srinivas R, Giblin D, Gross ML. Gas-phase Nazarov cyclization of protonated 2-methoxy and 2-hydroxychalcone: An example of intramolecular proton-transport catalysis. J Am Soc Mass Spectrom. 2009;20(5):805-818. https://doi.org/10.1016/j.jasms.2008.12.017.
Crotti AEM, Bronze-Uhle ES, Nascimento PG, et al. Gas-phase fragmentation of gamma-lactone derivatives by electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2009;44(12):1733-1741. https://doi.org/10.1002/jms.1682.
Dias HJ, Baguenard M, Crevelin EJ, et al. Gas-phase fragmentation reactions of protonated benzofuran- and dihydrobenzofuran-type neolignans investigated by accurate-mass electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2018;54(1):35-46. https://doi.org/10.1002/jms.4304.
Dias HJ, Vieira TM, Crevelin EJ, Donate PM, Crotti AEM. Fragmentation of 2-aroylbenzofuran derivatives by electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2017;52(12):809-816. https://doi.org/10.1002/jms.4024.
Aguiar GP, Crevelin EJ, Dias HJ, et al. Electrospray ionization tandem mass spectrometry of labdane-type acid diterpenes. J Mass Spectrom. 2018;53(11):1086-1096. https://doi.org/10.1002/jms.4284.
Dias HJ, Bento MVB, da Silva EH, et al. Gas-phase fragmentation reactions of protonated cocaine: New details to an old story. J Mass Spectrom. 2018;53(3):203-213. https://doi.org/10.1002/jms.4053.
Dias HJ, Stefani R, Tomaz JC, Vessecchi R, Crotti AEM. Differentiation between 3,4- and 4,15-epoxyeudesmanolides by electrospray ionization tandem mass spectrometry. J Anal Methods Chem. 2017;2017: 1-9. https://doi.org/10.1155/2017/7921867.
Aguiar GP, Wakabayashi KAL, Luz GF, et al. Fragmentation of plumeran indole alkaloids from Aspidosperma spruceanum by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(3):295-308. https://doi.org/10.1002/rcm.4389.
Vessecchi R, Carollo CA, Lopes JNC, Crotti AEM, Lopes NP, Galembeck SE. Gas-phase dissociation of 1,4-naphthoquinone derivative anions by electrospray ionization tandem mass spectrometry. J Mass Spectrom. 2009;44(8):1224-1233. https://doi.org/10.1002/jms.1600.
Crevelin EJ, Possato B, Lopes JLC, Lopes NP. Precursor ion scan mode-based strategy for fast screening of polyether ionophores by copper-induced gas-phase radical fragmentation reactions. Anal Chem. 2017;89(7):3929-3936. https://doi.org/10.1021/acs.analchem.6b02855.
Bouchoux G. Gas-phase basicities of polyfunctional molecules. Part 1: Theory and methods. Mass Spectrom Rev. 2007;26(6):775-835. https://doi.org/10.1002/mas.20151.
Range K, Riccardi D, Cui Q, Elstner M, York DM. Benchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer. Phys Chem Chem Phys. 2005;7(16):3070-3079. https://doi.org/10.1039/b504941e.
Boyd R, Somogyi Á. The mobile proton hypothesis in fragmentation of protonated peptides: A perspective. J Am Soc Mass Spectrom. 2010;21(8):1275-1278. https://doi.org/10.1016/j.jasms.2010.04.017.
Hu N, Tu YP, Liu Y, Jiang K, Pan Y. Dissociative protonation and proton transfers: Fragmentation of α,β-unsaturated aromatic ketones in mass spectrometry. J Org Chem. 2008;73(9):3369-3376. https://doi.org/10.1021/jo702464b.
Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39(10):1091-1112. https://doi.org/10.1002/jms.703.
Karni MA. The “even-electron rule”. Org Mass Spectrom. 1980;15(2):53-64. https://doi.org/10.1002/oms.1210150202.
McLafferty FW, Turecek F. Interpretation of Mass Spectra. 4th ed. Sausalito: University Science Books; 1993.
Schäfer M, Dray M, Springer A, Zacharias P, Meerholz K. Radical cations in electrospray mass spectrometry: Formation of open-shell species, examination of the fragmentation behavior in ESI-MSn and reaction mechanism studies by detection of transient radical cations. Eur J Org Chem. 2007;2007:5162-5174. https://doi.org/10.1002/ejoc.20070019.
معلومات مُعتمدة: 313648/2018-2 Conselho Nacional de Desenvolvimento Científico e Tecnológico; Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 2011/07623-8 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2016/19272-9 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2017/24856-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
المشرفين على المادة: 0 (Diarylheptanoids)
0 (Ions)
تواريخ الأحداث: Date Created: 20191218 Date Completed: 20210705 Latest Revision: 20210705
رمز التحديث: 20231215
DOI: 10.1002/rcm.8699
PMID: 31845428
قاعدة البيانات: MEDLINE