دورية أكاديمية

Challenges and trends for halogen determination by inductively coupled plasma mass spectrometry: A review.

التفاصيل البيبلوغرافية
العنوان: Challenges and trends for halogen determination by inductively coupled plasma mass spectrometry: A review.
المؤلفون: Flores EMM; Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil., Mello PA; Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil., Krzyzaniak SR; Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil., Cauduro VH; Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil., Picoloto RS; Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
المصدر: Rapid communications in mass spectrometry : RCM [Rapid Commun Mass Spectrom] 2020 Sep; Vol. 34 Suppl 3, pp. e8727. Date of Electronic Publication: 2020 May 22.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: John Wiley And Sons Ltd Country of Publication: England NLM ID: 8802365 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0231 (Electronic) Linking ISSN: 09514198 NLM ISO Abbreviation: Rapid Commun Mass Spectrom Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: Chichester : John Wiley And Sons Ltd
Original Publication: London, UK : Heyden, c1987-
مستخلص: Rationale: In this review, works published in the past 25 years for fluorine, chlorine, bromine, and iodine determination in several matrices by inductively coupled plasma mass spectrometry (ICP-MS) were covered. Usually, the determination of halogens has been performed by ICP-MS using a previous sample preparation step or, more recently, by direct analysis of solid or liquid samples.
Methods: Methods based on combustion, extraction, pyrohydrolysis, sample dilution in organic or aqueous medium, and wet digestion, among others, are discussed. Moreover, the recent applications of methods based on laser ablation (LA) and electrothermal vaporization (ETV) coupled to ICP-MS are discussed.
Results: The main challenge for methods using sample preparation has been to obtain a final solution compatible with ICP-MS, as well as to overcome problems related to analyte losses and contamination. Interferences due to the presence of dissolved organic compounds in solution, enhancement or suppression of ionization of analytes, and related matrix effects have been of concern when using ICP-MS. For the determination of halogens by ICP-MS using LA and ETV systems, some limitations related to the difficulty of calibration are pointed out, impairing the widespread use of this approach.
Conclusions: A critical view is presented for further halogen determination by ICP-MS, mainly for matrices considered difficult to digest using conventional protocols.
(© 2020 John Wiley & Sons, Ltd.)
References: Tjabadi E, Mketo N. Recent developments for spectrometric, chromatographic and electroanalytical determination of the total Sulphur and halogens in various matrices. TrAC-Trends Anal Chem. 2019;118:207-222.
Mesko MF, Costa VC, Picoloto RS, Bizzi CA, Mello PA. Halogen determination in food and biological materials using plasma-based techniques: Challenges and trends of sample preparation. J Anal Atom Spectrom. 2016;31:1243-1261.
Mello PA, Barin JS, Duarte FA, et al. Analytical methods for the determination of halogens in bioanalytical sciences: A review. Anal Bioanal Chem. 2013;405(24):7615-7642.
Greenwood NN, Earnshaw A (Eds). The halogens: fluorine, chlorine, bromine, iodine and astatine. In: Chemistry of the Elements. 2nd ed. Oxford: Butterworth-Heinemann; 1997:789-887.
Lai GY. High temperature corrosion of engineering alloys. Metals Park, OH, USA: American Society for Metals; 1990.
Mauerer O. New reactive, halogen-free flame retardant system for epoxy resins. Polym Degrad Stab. 2005;88(1):70-73.
Green J. An overview of the fire retardant chemicals industry, past-present-future. Fire Mater. 1995;19:197-204.
Mizehoun-Adissoda C, Desport JC, Houinato D, et al. Evaluation of iodine intake and status using inductively coupled plasma mass spectrometry in urban and rural areas in Benin, West Africa. Nutrition. 2016;32(5):560-565.
World Health Organization (WHO). Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. Geneva: World Health Organization; 2001.
Laag M, Soederlund EJ, Omichinski JG, et al. Effect of bromine and chlorine positioning in the induction of renal and testicular toxicity by halogenated propanes. Chem Res Toxicol. 1991;4:528-534.
World Health Organization (WHO). International Programme on Chemical Safety: Inadequate or Excess Fluoride: A Major Public Health Concern. Geneva: WHO Public Health and Environment; 2010.
Scott D. Around the World in 18 Elements. Cambridge: Royal Society of Chemistry; 2015.
Evans RB. Chlorine: State of the art. Lung. 2005;183(3):151-167.
Ismail A, Goh PS, Tee JC, Sanip SM, Aziz M. A review of purification techniques for carbon nanotubes. Nanomedicine. 2008;3:127-143.
Buryakov T, Romanenko A, Anikeeva O, Okotrub A, Yudanov N, Kotosonov A. Electrophysical properties of bromine-intercalated low-dimensional carbon structures. Low Temp Phys. 2007;33:268-271.
Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr Appl Phys. 2002;2:107-111.
Nascimento GM, Hou T, Kim YA, et al. Comparison of the resonance Raman behavior of double-walled carbon nanotubes doped with bromine or iodine vapors. J Phys Chem C. 2009;113:3934-3938.
Kiddee P, Naidu R, Wong MH. Electronic waste management approaches: An overview. Waste Manag. 2013;33(5):1237-1250.
Thomas R. Practical Guide to ICP-MS: A Tutorial for Beginners. Boca Raton, FL: CRC Press; 2003.
Taylor HE. Inductively Coupled Plasma-Mass Spectrometry: Practices and Techniques. San Diego: Academic Press; 2001.
Montaser A. Inductively Coupled Plasma Mass Spectrometry. New York: John Wiley; 1998.
Bu X, Wang T, Hall G. Determination of halogens in organic compounds by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). J Anal Atom Spectrom. 2003;18:1443-1451.
Zheng J, Takata H, Tagami K, Aono T, Fujita K, Uchida S. Rapid determination of total iodine in Japanese coastal seawater using SF-ICP-MS. Microchem J. 2012;100:42-47.
Jakubowski N, Moens L, Vanhaecke F. Sector field mass spectrometers in ICP-MS. Spectrochim Acta B. 1998;53:1739-1763.
Guo W, Jin L, Hu S, Guo Q. Method development for the determination of total fluorine in foods by tandem inductively coupled plasma mass spectrometry with a mass-shift strategy. J Agric Food Chem. 2017;65(16):3406-3412.
Sheppard BS, Caruso JA. Plasma mass spectrometry: Consider the source. Invited lecture. J Anal Atom Spectrom. 1994;9:145-149.
May TW, Wiedmeyer RH. A table of polyatomic interferences in ICP-MS. Atom Spectrosc. 1998;19:150-155.
Lum T-S, Sze-Yin Leung K. Strategies to overcome spectral interference in ICP-MS detection. J Anal Atom Spectrom. 2016;31:1078-1088.
Sansonetti JE, Martin WC. Handbook of basic atomic spectroscopic data. J Phys Chem Ref Data Monogr. 2005;34:1559-2259.
Holden N, Coplen T, Bohlke J, et al. IUPAC periodic table of the elements and isotopes (IPTEI) for the education community (IUPAC technical report). Pure Appl Chem. 2018;90:1833-2092.
Jamari NLA, Dohmann JF, Raab A, Krupp EM, Feldmann J. Novel non-targeted analysis of perfluorinated compounds using fluorine-specific detection regardless of their ionisability (HPLC-ICPMS/MS-ESI-MS). Anal Chim Acta. 2019;1053:22-31.
Jamari NLA, Dohmann JF, Raab A, Krupp EM, Feldmann J. Novel non-target analysis of fluorine compounds using ICPMS/MS and HPLC-ICPMS/MS. J Anal Atom Spectrom. 2017;32:942-950.
Yan X, Tanaka T, Kawaguchi H. Electrothermal vaporization for the determination of halogens by reduced pressure inductively coupled plasma mass spectrometry. Spectrochim Acta B. 1996;51:1345-1353.
Zhu Y, Nakano K, Shikamori Y. Analysis of fluorine in drinking water by ICP-QMS/QMS with an octupole reaction cell. Anal Sci. 2017;33(11):1279-1284.
Jamari NLA, Behrens A, Raab A, Krupp EM, Feldmann J. Plasma processes to detect fluorine with ICPMS/MS as [M-F]+: An argument for building a negative mode ICPMS/MS. J Anal Atom Spectrom. 2018;33:1304-1309.
Vickers GH, Wilson DA, Hieftje GM. Detection of negative ions by inductively coupled plasma mass spectrometry. Anal Chem. 1988;60:1808-1812.
Knapp G, Maichin B, Fecher P, Hasse S, Schramel P. Iodine determination in biological materials options for sample preparation and final determination. Fresen J Anal Chem. 1998;362:508-513.
Henn AS, Rondan FS, Mesko MF, et al. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry. Spectrochim Acta B. 2018;143:48-54.
Antes FG, Santos MFP, Guimarães RCL, Paniz JNG, Flores EMM, Dressler VL. Heavy crude oil sample preparation by pyrohydrolysis for further chlorine determination. Anal Methods. 2011;3:288-293.
Barbosa JTP, Santos CMM, Bispo LS, et al. Bromine, chlorine, and iodine determination in soybean and its products by ICP-MS after digestion using microwave-induced combustion. Food Anal Methods. 2013;6:1065-1070.
Antes FG, Duarte FA, Paniz JG, et al. Chlorine determination in petroleum coke using pyrohydrolysis and DRC-ICP-MS. Atom Spectrosc. 2008;29:157-164.
Pereira LSF, Frohlich AC, Duarte FA, Burrow RA, Muller EI, Flores EMM. Determination of halogens and sulfur in pitch from crude oil by plasma-based techniques after microwave-induced combustion. J Anal Atom Spectrom. 2015;30:1822-1827.
Antes FG, Duarte FA, Flores ELM, Paniz JNG, Flores EMM, Dressler VL. Fluoride and chloride determination in fossil fuels after sample preparation by pyrohydrolysis. Quim Nova. 2010;33:1130-1134.
Nelson J, Poirier L, Lopez-Linares F. Determination of chloride in crude oils by direct dilution using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). J Anal Atom Spectrom. 2019;34:1433-1438.
Ohata M, Wada A. The determination of chlorine in plastic using isotope dilution inductively coupled plasma mass spectrometry. Anal Methods. 2017;9:4004-4010.
Romarís-Hortas V, Moreda-Piñeiro A, Bermejo-Barrera P. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta. 2009;79(3):947-952.
Romarís-Hortas V, García-Sartal C, Barciela-Alonso MC, Domínguez-González R, Moreda-Piñeiro A, Bermejo-Barrera P. Bioavailability study using an in-vitro method of iodine and bromine in edible seaweed. Food Chem. 2011;124:1747-1752.
Grinberg P, Sturgeon RE. Ultra-trace determination of iodine in sediments and biological material using UV photochemical generation-inductively coupled plasma mass spectrometry. Spectrochim Acta B. 2009;64:235-241.
Xu L, Luo C, Ling H, Tang Y, Wen H. Determination of low bromine (Br) and iodine (I) in water with low- to high-salinity content using ICP-MS. Int J Mass Spectrom. 2018;432:52-58.
Takeda A, Yamasaki S-I, Tsukada H, Takaku Y, Hisamatsu SI, Tsuchiya N. Determination of total contents of bromine, iodine and several trace elements in soil by polarizing energy-dispersive X-ray fluorescence spectrometry. Soil Sci Plant Nutr. 2011;57:19-28.
Jerše A, Jaćimović R, Maršić NK, Germ M, Šircelj H, Stibilj V. Determination of iodine in plants by ICP-MS after alkaline microwave extraction. Microchem J. 2018;137:355-362.
Devouge-Boyer C, Mouda S, Gueguen O, Marcotte S. Determination of iodine in polyamide by inductively-coupled plasma/mass spectrometry. Talanta. 2018;189:568-572.
Badocco D, Di Marco V, Piovan A, Caniato R, Pastore P. A procedure for the quantification of total iodine by inductively coupled plasma mass spectrometry, and its application to the determination of iodine in algae sampled in the lagoon of Venice. Anal Methods. 2016;8:7545-7551.
Romarís-Hortas V, Bermejo-Barrera P, Moreda-Piñeiro A. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry. J Chromatogr A. 2013;1309:33-40.
Reid HJ, Bashammakh AA, Goodall PS, Landon MR, O'Connor C, Sharp BL. Determination of iodine and molybdenum in milk by quadrupole ICP-MS. Talanta. 2008;75(1):189-197.
Schnetger B, Muramatsu Y. Determination of halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst. 1996;121(11):1627-1631.
Grindlay G, Mora J, de Loos-Vollebregt M, Vanhaecke F. A systematic study on the influence of carbon on the behavior of hard-to-ionize elements in inductively coupled plasma-mass spectrometry. Spectrochim Acta B. 2013;86:42-49.
Novo DR, Pereira RM, Henn AS, Costa VC, Flores EMM, Mesko MF. Are there feasible strategies for determining bromine and iodine in human hair using interference-free plasma based-techniques? Anal Chim Acta. 2019;1060:45-52.
Muller EI, Souza JP, Anschau KF, et al. Determination of Br, Cl and I in honey using ICP-based techniques following microwave-assisted wet digestion with alkaline H2O2 in a single reaction chamber. Anal Methods. 2017;9:649-654.
Larsen EH, Stürup S. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J Anal Atom Spectrom. 1994;9:1099-1105.
Hu Z, Hu S, Gao S, Liu Y, Lin S. Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: A case study of methanol and acetone. Spectrochim Acta B. 2004;59:1463-1470.
Pettine M, Casentini B, Mastroianni D, Capri S. Dissolved inorganic carbon effect in the determination of arsenic and chromium in mineral waters by inductively coupled plasma-mass spectrometry. Anal Chim Acta. 2007;599(2):191-198.
Campbell M, Demesmay C, Ollé M. Determination of total arsenic concentrations in biological matrices by inductively coupled plasma mass spectrometry. J Anal Atom Spectrom. 1994;9:1379-1384.
Mesko MF, Mello PA, Bizzi CA, Dressler VL, Knapp G, Flores EMM. Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave-induced combustion. Anal Bioanal Chem. 2010;398(2):1125-1131.
He T, Xie J, Hu Z, et al. A rapid acid digestion technique for the simultaneous determination of bromine and iodine in fifty-three Chinese soils and sediments by ICP-MS. Geostand Geoanal Res. 2018;42:309-318.
Fecher PA, Goldmann I, Nagengast A. Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J Anal Atom Spectrom. 1998;13:977-982.
Gois JS, Vallelonga P, Spolaor A, Devulder V, Borges DL, Vanhaecke F. Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system. Anal Bioanal Chem. 2016;408(2):409-416.
Chai JY, Muramatsu Y. Determination of bromine and iodine in twenty-three geochemical reference materials by ICP-MS. Geostand Geoanal Res. 2007;31:143-150.
Leufroy A, Noel L, Bouisset P, et al. Determination of total iodine in French Polynesian foods: Method validation and occurrence data. Food Chem. 2015;169:134-140.
Leppänen K, Niemelä M, Perämäki P. Development of an efficient acid digestion procedure utilizing high-pressure asher technique for the determination of iodine and metallic elements in milk powder. Food Anal Methods. 2014;7:1103-1108.
Silva JS, Iop GD, Pereira RM, et al. Halogen determination in polymeric waste of electrical and electronic equipment: Overcoming limitations in sample preparation. J Braz Chem Soc. 2019;30:2334-2343.
Huynh D, Zhou SJ, Gibson R, Palmer L, Muhlhausler B. Validation of an optimized method for the determination of iodine in human breast milk by inductively coupled plasma mass spectrometry (ICPMS) after tetramethylammonium hydroxide extraction. J Trace Elem Med Biol. 2015;29:75-82.
Ohata M, Miura T. Accurate determination and certification of bromine in plastic by isotope dilution inductively coupled plasma mass spectrometry. Anal Chim Acta. 2014;837:23-30.
Sun M, Gao Y, Wei B, Wu X. Determination of iodine and bromine in coal and atmospheric particles by inductively coupled plasma mass spectrometry. Talanta. 2010;81(1-2):473-476.
Rose M, Miller P, Baxter M, Appleton G, Crews H, Croasdale M. Bromine and iodine in 1997 UK total diet study samples. J Environ Monit. 2001;3(4):361-365.
Tinggi U, Schoendorfer NC, Davies PSW, Scheelings P, Olszowy HA. Determination of iodine in selected foods and diets by inductively coupled plasma-mass spectrometry. Pure Appl Chem. 2011;84:291-299.
Vanhaecke F, Vanhoe H, Dams R, Vandecasteele C. The use of internal standards in ICP-MS. Talanta. 1992;39:737-742.
Bing L, Xinrong M, Lirong H, Hongxia Y. Pressurised extraction using dilute ammonia: A simple method for determination of iodine in soil, sediment and biological samples by inductively coupled plasma-mass spectrometry. Geostand Geoanal Res. 2004;28:317-323.
Tagami K, Uchida S, Hirai I, Tsukada H, Takeda H. Determination of chlorine, bromine and iodine in plant samples by inductively coupled plasma-mass spectrometry after leaching with tetramethyl ammonium hydroxide under a mild temperature condition. Anal Chim Acta. 2006;570:88-92.
Michel A, Villemant B. Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials. Geostandard Newslett. 2003;27:163-171.
Di Narda F, Toniolo R, Susmel S, Pizzariello A, Bontempelli G. A comparison among different instrumental approaches for bromide analysis in foodstuffs digested by a suitably modified microwave procedure. Talanta. 2003;60(4):653-662.
Di Narda F, Toniolo R, Bontempelli G. Improved microwave digestion procedure for inductively coupled plasma mass spectrometric determinations of inorganic bromide residues in foodstuffs fumigated with methyl bromide. Anal Chim Acta. 2001;436:245-252.
Balcone-Boissard H, Michel A, Villemant B. Simultaneous determination of fluorine, chlorine, bromine and iodine in six geochemical reference materials using pyrohydrolysis, ion chromatography and inductively coupled plasma-mass spectrometry. Geostand Geoanal Res. 2009;33:477-485.
Fernandes AR, Mortimer D, Rose M, Smith F, Panton S, Garcia-Lopez M. Bromine content and brominated flame retardants in food and animal feed from the UK. Chemosphere. 2016;150:472-478.
Dyke JV, Dasgupta PK, Kirk AB. Trace iodine quantitation in biological samples by mass spectrometric methods: The optimum internal standard. Talanta. 2009;79(2):235-242.
Gélinas Y, Iyengar GV, Barnes RM. Total iodine in nutritional and biological reference materials using neutron activation analysis and inductively coupled plasma mass spectrometry. Fresen J Anal Chem. 1998;362:483-488.
Moss AA, Kaufman L, Nelson JA. Fluorescent excitation analysis: A simplified method of iodine determination in vitro. Invest Radiol. 1972;7(4):335-338.
Lauber K. Iodine determination in biological material. Kinetic measurement of the catalytic activity of iodide. Anal Chem. 1975;47(4):769-771.
Tsunoda K, Fujiwara K, Fuwa K. Subnanogram fluorine determination by aluminum monofluoride molecular absorption spectrometry. Anal Chem. 1977;49:2035-2039.
Giles I, Peisach M. Determination of fluorine by the spectrometry of prompt gamma-rays. J Radioanal Nucl Chem. 1976;32:105-116.
Aoki T, Munemori M. Continuous flow determination of free chlorine in water. Anal Chem. 1983;55:209-212.
Rapaport M, Mantel M, Shenberg C. Determination of bromine in blood serum by 125I excited X-ray fluorescence. Med Phys. 1982;9(2):194-198.
Gélinas Y, Krushevska A, Barnes RM. Determination of total iodine in nutritional and biological samples by ICP-MS following their combustion within an oxygen stream. Anal Chem. 1998;70(5):1021-1025.
Rädlinger G, Heumann KG. Iodine determination in food samples using inductively coupled plasma isotope dilution mass spectrometry. Anal Chem. 1998;70(11):2221-2224.
Shelor CP, Dasgupta PK. Review of analytical methods for the quantification of iodine in complex matrices. Anal Chim Acta. 2011;702(1):16-36.
Doyle A, Saavedra A, Tristão MLB, Mendes LA, Aucélio RQ. Spectrometric methods for the determination of chlorine in crude oil and petroleum derivatives - a review. Spectrochim Acta B. 2013;86:102-107.
Hammerli J, Rusk B, Spandler C, Emsbo P, Oliver NHS. In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: A powerful tool to identify fluid sources. Chem Geol. 2013;337-338:75-87.
Boulyga SF, Heumann KG. Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS. Int J Mass Spectrom. 2005;242:291-296.
Izgi B, Kayar M. Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta. 2015;139:117-122.
Okamoto Y. Determination of fluorine in aqueous samples by electrothermal vaporisation inductively coupled plasma mass spectrometry (ETV-ICP-MS). J Anal Atom Spectrom. 2001;16:539-541.
Gois JS, Almeida TS, Alves JC, Araujo RG, Borges DL. Assessment of the halogen content of Brazilian inhalable particulate matter (PM10) using high resolution molecular absorption spectrometry and electrothermal vaporization inductively coupled plasma mass spectrometry, with direct solid sample analysis. Environ Sci Technol. 2016;50(6):3031-3038.
Flores EMM, Barin JS, Knapp G. Trends in sample preparation using combustion techniques. In: Arruda MAZ, ed. Trends in Sample Preparation. Vol. 1. UK: Nova Science Publishers; 2007:73-114.
Sussulini A, Garcia JS, Mesko MF, et al. Evaluation of soybean seed protein extraction focusing on metalloprotein analysis. Microchim Acta. 2007;158:173-180.
Barin JS, Mello PA, Mesko MF, Duarte FA, Flores EMM. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: A review. Anal Bioanal Chem. 2016;408(17):4547-4566.
Mello PA, Giesbrecht CK, Alencar MS, et al. Determination of sulfur in petroleum coke combining closed vessel microwave-induced combustion and inductively coupled plasma-optical emission spectrometry. Anal Lett. 2008;41:1623-1632.
Bizzi CA, Pedrotti MF, Silva JS, Barin JS, Nobrega JA, Flores EMM. Microwave-assisted digestion methods: Towards greener approaches for plasma-based analytical techniques. J Anal Atom Spectrom. 2017;32:1448-1466.
Iop GD, Krzyzaniak SR, Silva JS, Flores EMM, Costa AB, Mello PA. Feasibility of microwave-assisted ultraviolet digestion of polymeric waste electrical and electronic equipment for the determination of bromine and metals (Cd, Cr, Hg, Pb and Sb) by ICP-MS. J Anal Atom Spectrom. 2017;32:1789-1797.
Couto RR, Faversani J, Ceretta CA, et al. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization. Ecotoxicol Environ Saf. 2018;153:142-150.
Gónzalez-Iglesias H, Remy RRFS, López-Sastre J, et al. Efficiency of iodine supplementation, as potassium iodide, during lactation: A study in neonates and their mothers. Food Chem. 2012;133:859-865.
Purchas RW, Wilkinson BHP, Carruthers F, Jackson F. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J Food Compos Anal. 2014;35:75-82.
Judprasong K, Jongjaithet N, Chavasit V. Comparison of methods for iodine analysis in foods. Food Chem. 2016;193:12-17.
Muller ALH, Mello PA, Mesko MF, et al. Bromine and iodine determination in active pharmaceutical ingredients by ICP-MS. J Anal Atom Spectrom. 2012;27:1889-1894.
Picoloto RS, Cruz SM, Mello PA, Muller EI, Smichowski P, Flores EMM. Combining pyrohydrolysis and ICP-MS for bromine and iodine determination in airborne particulate matter. Microchem J. 2014;116:225-229.
Hofmann NR, Paniz JNG, Flores EMM, Pedrotti MF, Dressler VL. Determination of halogens in cardboard gaskets using pyrohydrolysis. Anal Lett. 2016;49:1903-1916.
Antes FG, Pereira JSF, Enders MSP, et al. Pyrohydrolysis of carbon nanotubes for Br and I determination by ICP-MS. Microchem J. 2012;101:54-58.
Bettinelli M, Spezia S, Minoia C, Ronchi A. Determination of chlorine, fluorine, bromine, and iodine in coals with ICP-MS and I.C. Atom Spectrosc. 2002;23:105-110.
Toralles IG, Coelho GS Jr, Costa VC, Cruz SM, Flores EMM, Mesko MF. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS. Food Chem. 2017;221:877-883.
Gao Y-C, Gao Q-F, Sun M-X, Zhu Z-X, Chen Z-H. Simultaneous measurements of arsenic, bromine, and iodine in coal and coke by inductively coupled plasma-mass spectrometer. Chin J Anal Chem. 2007;35:1175-1178.
Silva JS, Diehl LO, Frohlich AC, et al. Determination of bromine and iodine in edible flours by inductively coupled plasma mass spectrometry after microwave-induced combustion. Microchem J. 2017;133:246-250.
Mesko MF, Toralles IG, Crizel MG, et al. Bromine and iodine determination in edible seaweed by ICP-MS after digestion by microwave-induced combustion. Quim Nova. 2014;37:964-968.
Costa VC, Picoloto RS, Hartwig CA, Mello PA, Flores EMM, Mesko MF. Feasibility of ultra-trace determination of bromine and iodine in honey by ICP-MS using high sample mass in microwave-induced combustion. Anal Bioanal Chem. 2015;407(26):7957-7964.
Novo DR, Mello JE, Rondan FS, Henn AS, Mello PA, Mesko MF. Bromine and iodine determination in human saliva: Challenges in the development of an accurate method. Talanta. 2019;191:415-421.
Nascimento MS, Mendes ALG, Henn AS, Picoloto RS, Mello PA, Flores EMM. Accurate determination of bromine and iodine in medicinal plants by inductively coupled plasma-mass spectrometry after microwave-induced combustion. Spectrochim Acta B. 2017;138:58-63.
Picoloto RS, Doneda M, Flores ELM, Mesko MF, Flores EMM, Mello PA. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion. Spectrochim Acta B. 2015;107:86-92.
Silva SV, Picoloto RS, Flores EMM, Wagner R, Richards NSPS, Barin JS. Evaluation of bromine and iodine content of milk whey proteins combining digestion by microwave-induced combustion and ICP-MS determination. Food Chem. 2016;190:364-367.
Cauduro VH, Doneda M, Barin JS, Mello PA, Flores EMM, Picoloto RS. Successive digestions for pre-concentration and ultra-trace determination of Br and I by plasma-based atomic spectrometry and ion chromatography. Microchem J. 2019;147:239-244.
Krzyzaniak SR, Santos RF, Dalla Nora FM, Cruz SM, Flores EMM, Mello PA. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC. Talanta. 2016;158:193-197.
Rondan FS, Hartwig CA, Novo DLR, et al. Ultra-trace determination of bromine and iodine in rice by ICP-MS after microwave-induced combustion. J Food Compos Anal. 2018;66:199-204.
Hartwig CA, Toralles IG, Crizel MG, et al. Determination of bromine and iodine in shrimp and its parts by ICP-MS after decomposition using microwave-induced combustion. Anal Methods. 2014;6:7540-7546.
Pereira LSF, Pedrotti MF, Enders MSP, Albers CN, Pereira JSF, Flores EMM. Multitechnique determination of halogens in soil after selective volatilization using microwave-induced combustion. Anal Chem. 2017;89(1):980-987.
Pereira JSF, Antes FG, Diehl LO, et al. Microwave-induced combustion of carbon nanotubes for further halogen determination. J Anal Atom Spectrom. 2010;25:1268-1274.
Mesko MF, Pereira RM, Scaglioni PT, Novo DR. Single analysis of human hair for determining halogens and sulfur after sample preparation based on combustion reaction. Anal Bioanal Chem. 2019;411(19):4873-4881.
Pereira JS, Moreira CM, Albers CN, Jacobsen OS, Flores EMM. Determination of total organic halogen (TOX) in humic acids after microwave-induced combustion. Chemosphere. 2011;83(3):281-286.
Moraes DP, Pereira JS, Diehl LO, et al. Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal Bioanal Chem. 2010;397:563-570.
Shtangeeva I, Niemelä M, Perämäki P, et al. Phytoextraction of bromine from contaminated soil. J Geochem Explor. 2017;174:21-28.
Flores EMM, Barin JS, Paniz JNG, Medeiros JA, Knapp G. Microwave-assisted sample combustion: A technique for sample preparation in trace element determination. Anal Chem. 2004;76:3525-3529.
Mesko MF, Pereira JSF, Moraes DP, et al. Focused microwave-induced combustion: A new technique for sample digestion. Anal Chem. 2010;82(5):2155-2160.
Flores EMM, Mesko MF, Moraes DP, et al. Determination of halogens in coal after digestion using the microwave-induced combustion technique. Anal Chem. 2008;80(6):1865-1870.
Muller ALH, Bizzi CA, Pereira JSF, et al. Bromine and chlorine determination in cigarette tobacco using microwave-induced combustion and inductively coupled plasma optical emission spectrometry. J Braz Chem Soc. 2011;22:1649-1655.
Pereira RM, Costa VC, Hartwig CA, et al. Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwave-induced combustion. Talanta. 2016;147:76-81.
Mello PA, Giesbrecht CK, Alencar MS, et al. Determination of sulfur in petroleum coke combining closed vessel microwave-induced combustion and inductively coupled plasma-optical emission spectrometry. Anal Lett. 2008;41:1623-1632.
Barin JS, Flores EMM, Mesko MF, Mello PA, Pereira JSF. Microwave-induced combustion. In: Flores EMM, ed. Microwave-Assisted Sample Preparation for Trace Element Analysis. Amsterdam: Elsevier; 2014:143-177.
Duarte FA, Oliveira PV, Nogueira ARA. Microwave-assisted extraction. In: Flores EMM, ed. Microwave-Assisted Sample Preparation for Trace Element Analysis. Amsterdam: Elsevier; 2014:231-251.
Nobrega JA, Gélinas Y, Krushevska A, Barnes RM. Determination of elements in biological and botanical materials by inductively coupled plasma atomic emission and mass spectrometry after extraction with a tertiary amine reagent. J Anal Atom Spectrom. 1997;12:1239-1242.
Al-Ammar A, Reitznerová E, Barnes RM. Thorium and iodine memory effects in inductively-coupled plasma mass spectrometry. Fresen J Anal Chem. 2001;370(5):479-482.
Yeh TS, Hung NH, Lin TC. Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. J Food Drug Anal. 2014;22:189-196.
Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015;3:286-295.
Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet. 2008;372(9645):1251-1262.
Lavagnini I, Badocco D, Pastore P, Magno F. Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits. Talanta. 2011;87:180-188.
Bizzi CA, Barin JS, Muller EI, Schmidt L, Nobrega JA, Flores EMM. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid. Talanta. 2011;83(5):1324-1328.
Barbosa JTP, Santos CMM, Peralva VN, et al. Microwave-assisted diluted acid digestion for trace elements analysis of edible soybean products. Food Chem. 2015;175:212-217.
Pereira LSF, Pedrotti MF, Vecchia PD, Pereira JSF, Flores EMM. A simple and automated sample preparation system for subsequent halogens determination: Combustion followed by pyrohydrolysis. Anal Chim Acta. 2018;1010:29-36.
Taflik T, Duarte FA, Flores ELM, et al. Determination of bromine, fluorine and iodine in mineral supplements using pyrohydrolysis for sample preparation. J Braz Chem Soc. 2012;23:488-495.
Jakobik-Kolon A, Milewski A, Dydo P, Witczak M, Bok-Badura J. Fast and simple analytical method for direct determination of total chlorine content in polyglycerol by ICP-MS. Molecules. 2018;23:487-495.
Flores EL, Barin JS, Flores EMM, Dressler VL. A new approach for fluorine determination by solid sampling graphite furnace molecular absorption spectrometry. Spectrochim Acta B. 2007;62:918-923.
Resano M, Vanhaecke F, de Loos-Vollebregt MTC. Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry - a critical review with focus on solid sampling and slurry analysis. J Anal Atom Spectrom. 2008;23:1450-1475.
Vanhaecke F, Resano M, Moens L. Electrothermal vaporisation ICP-mass spectrometry (ETV-ICP-MS) for the determination and speciation of trace elements in solid samples - a review of real-life applications from the author's lab. Anal Bioanal Chem. 2002;374(2):188-195.
Pozebon D, Scheffler GL, Dressler VL. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: A follow-up review. J Anal Atom Spectrom. 2017;32:890-919.
Gois JS, Pereira ER, Welz B, Borges DLG. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta B. 2015;105:12-17.
Antes FG, Dullius E, Costa AB, et al. Development of a vaporization system for direct determination of chlorine in petroleum coke by ICP-MS. Microchem J. 2013;109:117-121.
Fietzke J, Frische M, Hansteen TH, Eisenhauer A. A simplified procedure for the determination of stable chlorine isotope ratios (δ37Cl) using LA-MC-ICP-MS. J Anal Atom Spectrom. 2008;23:769-772.
Ansberque C, Mark C, Caulfield J, Chew D. Combined in-situ determination of halogen (F, Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS: A potential new provenance tool. Chem Geol. 2019;524:406-420.
Leisen M, Boiron M-C, Richard A, Dubessy J. Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis: Implications for the origin of salinity in crustal fluids. Chem Geol. 2012;330-331:197-206.
Okamoto Y, Komori H, Kataoka H, Tsukahara S, Fujiwara T. Direct determination of bromine in plastics by electrothermal vaporization/inductively coupled plasma mass spectrometry using a tungsten boat furnace vaporizer and an exchangeable sample cuvette system. Rapid Commun Mass Spectrom. 2010;24:1265-1270.
Gois JS, Malderen SJMV, Cadorim HR, Welz B, Vanhaecke F. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers. Spectrochim Acta B. 2017;132:50-55.
Gois JS, Pereira ER, Welz B, Borges DL. Simultaneous determination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. Anal Chim Acta. 2014;852:82-87.
Seo J, Guillong M, Aerts M, Zajacz Z, Heinrich C. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem Geol. 2011;284:35-44.
معلومات مُعتمدة: 426315/2016-2_Rochele S. Picoloto Conselho Nacional de Desenvolvimento Científico e Tecnológico; INCTBio (Proc. Nr. 573672/2008-3)_Erico M. M. Flores Conselho Nacional de Desenvolvimento Científico e Tecnológico; Finance Code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
تواريخ الأحداث: Date Created: 20200118 Date Completed: 20200921 Latest Revision: 20200921
رمز التحديث: 20221213
DOI: 10.1002/rcm.8727
PMID: 31950534
قاعدة البيانات: MEDLINE