دورية أكاديمية

A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism.

التفاصيل البيبلوغرافية
العنوان: A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose metabolism.
المؤلفون: Pradas-Juni M; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Hansmeier NR; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Link JC; Department of Biological Chemistry, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.; Department of Medicine, Division of Cardiology, UCLA, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA., Schmidt E; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Larsen BD; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark., Klemm P; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Meola N; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark., Topel H; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.; Izmir Biomedicine and Genome Center (IBG), Mithatpasa Ave. 58/5, 35340, Izmir, Turkey.; Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Mithatpasa Ave. 1606, 35330, Izmir, Turkey., Loureiro R; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Dhaouadi I; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Kiefer CA; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark., Schwarzer R; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Khani S; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Oliverio M; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Awazawa M; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.; Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan., Frommolt P; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Heeren J; Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, 20246, Hamburg, Germany., Scheja L; Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, 20246, Hamburg, Germany., Heine M; Department of Biochemistry and Molecular Cell Biology, Martinistraße 52, 20246, Hamburg, Germany., Dieterich C; Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany., Büning H; Institute of Experimental Hematology, Hanover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany., Yang L; Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA.; Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA., Cao H; Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA., Jesus DF; Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, 02215, MA, USA., Kulkarni RN; Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, 02215, MA, USA., Zevnik B; CECAD in vivo Research Facility, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Tröder SE; CECAD in vivo Research Facility, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany., Knippschild U; Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein Allee 93, 89081, Ulm, Germany., Edwards PA; Department of Biological Chemistry, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.; Department of Medicine, Division of Cardiology, UCLA, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA., Lee RG; IONIS Pharmaceuticals, Carlsbad, CA, 92010, USA., Yamamoto M; Department of Medical Biochemistry, Tohoku Medical Megabank Organization, Sendai, 980-8573, Japan., Ulitsky I; Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel., Fernandez-Rebollo E; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark., Vallim TQA; Department of Biological Chemistry, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA. TVallim@mednet.ucla.edu.; Department of Medicine, Division of Cardiology, UCLA, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA. TVallim@mednet.ucla.edu., Kornfeld JW; Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark. janwilhelmkornfeld@bmb.sdu.dk.; Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany. janwilhelmkornfeld@bmb.sdu.dk.; Cologne Cluster of Excellence-Cellular Stress Responses in Ageing-associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany. janwilhelmkornfeld@bmb.sdu.dk.
المصدر: Nature communications [Nat Commun] 2020 Jan 31; Vol. 11 (1), pp. 644. Date of Electronic Publication: 2020 Jan 31.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Diabetes Mellitus, Type 2/*genetics , Glucose/*metabolism , Liver/*metabolism , MafG Transcription Factor/*genetics , Obesity/*genetics , RNA, Long Noncoding/*genetics , Repressor Proteins/*genetics, Aged ; Animals ; Diabetes Mellitus, Type 2/metabolism ; Humans ; MafG Transcription Factor/metabolism ; Male ; Mice ; Middle Aged ; Obesity/metabolism ; RNA, Long Noncoding/metabolism ; RNA, Messenger/genetics ; RNA, Messenger/metabolism ; Repressor Proteins/metabolism ; TOR Serine-Threonine Kinases/genetics ; TOR Serine-Threonine Kinases/metabolism
مستخلص: Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.
References: Rui, L. Energy metabolism in the liver. Compr. Physiol. 4, 177–197 (2014). (PMID: 10.1002/cphy.c13002440506414050641)
Lempradl, A., Pospisilik, J. A. & Penninger, J. M. Exploring the emerging complexity in transcriptional regulation of energy homeostasis. Nat. Rev. Genet. 16, 665–681 (2015). (PMID: 10.1038/nrg3941)
Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006). (PMID: 10.1038/nature05487)
Hotamisligil, G. S. Endoplasmic reticulum stress and atherosclerosis. Nat. Med. 16, 396–399 (2010). (PMID: 10.1038/nm0410-39628970682897068)
Torres, D. M., Williams, C. D. & Harrison, S. A. Features, diagnosis, and treatment of nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 10, 837–858 (2012). (PMID: 10.1016/j.cgh.2012.03.011)
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007). (PMID: 10.1038/nature05874)
Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005). (PMID: 10.1126/science.1112014)
Zhao, Y., Yuan, J. & Chen, R. NONCODEv4: annotation of noncoding RNAs with emphasis on long noncoding RNAs. Methods Mol. Biol. 1402, 243–254 (2016). (PMID: 10.1007/978-1-4939-3378-5_19)
Mattick, J. S. & Rinn, J. L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 22, 5–7 (2015). (PMID: 10.1038/nsmb.2942)
Clark, M. B. et al. The reality of pervasive transcription. PLoS Biol. 9, e1000625 (2011). discussion e1001102. (PMID: 10.1371/journal.pbio.100062531344463134446)
Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012). (PMID: 10.1101/gr.132159.11134314933431493)
Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013). (PMID: 10.1016/j.cell.2013.06.02039247873924787)
Iyer, M. K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015). (PMID: 10.1038/ng.319244177584417758)
Kong, L. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35, W345–W349 (2007). (PMID: 10.1093/nar/gkm39119332321933232)
Tichon, A. et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat. Commun. 7, 12209 (2016). (PMID: 10.1038/ncomms1220949471674947167)
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007). (PMID: 10.1016/j.cell.2007.05.02220843692084369)
Mele, M. & Rinn, J. L. “Cat’s Cradling” the 3D genome by the act of LncRNA transcription. Mol. Cell 62, 657–664 (2016). (PMID: 10.1016/j.molcel.2016.05.011)
Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106, 11667–11672 (2009). (PMID: 10.1073/pnas.0904715106)
Mondal, T. et al. MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat. Commun. 6, 7743 (2015). (PMID: 10.1038/ncomms874345252114525211)
Lin, A. et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol. 19, 238–251 (2017). (PMID: 10.1038/ncb347353322985332298)
Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362 (2018).
Sallam, T. et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature 534, 124–128 (2016). (PMID: 10.1038/nature1767448960914896091)
Yang, L. et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500, 598–602 (2013). (PMID: 10.1038/nature1245140343864034386)
Li, P. et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metab. 21, 455–467 (2015). (PMID: 10.1016/j.cmet.2015.02.00443500204350020)
Chen, G. et al. LncRNA SRA promotes hepatic steatosis through repressing the expression of adipose triglyceride lipase (ATGL). Sci. Rep. 6, 35531 (2016). (PMID: 10.1038/srep3553150694935069493)
Ruan, X., Li, P., Cangelosi, A., Yang, L. & Cao, H. A Long Non-coding RNA, lncLGR, Regulates Hepatic Glucokinase Expression and Glycogen Storage during Fasting. Cell Rep. 14, 1867–1875 (2016). (PMID: 10.1016/j.celrep.2016.01.06247753264775326)
Zhu, X., Wu, Y. B., Zhou, J. & Kang, D. M. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun. 469, 319–325 (2016). (PMID: 10.1016/j.bbrc.2015.11.048)
Kinsella, R. J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database 2011, bar030 (2011). (PMID: 10.1093/database/bar03031701683170168)
Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nat. Commun. 4, 1528 (2013). (PMID: 10.1038/ncomms253737407443740744)
Wang, L. et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41, e74 (2013). (PMID: 10.1093/nar/gkt00636166983616698)
Alam, T. et al. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes. PloS One 9, e109443 (2014). (PMID: 10.1371/journal.pone.010944341836044183604)
Mele, M. et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 27, 27–37 (2016).
Buske, F. A., Boden, M., Bauer, D. C. & Bailey, T. L. Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics 26, 860–866 (2010). (PMID: 10.1093/bioinformatics/btq04928449912844991)
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015). (PMID: 10.1093/nar/gkv41644892694489269)
Qi, M. et al. Analysis of long non-coding RNA expression of lymphatic endothelial cells in response to type 2 diabetes. Cell Physiol. Biochem. 41, 466–474 (2017). (PMID: 10.1159/0004565992821488828214888)
Marini, M. G. et al. hMAF, a small human transcription factor that heterodimerizes specifically with Nrf1 and Nrf2. J. Biol. Chem. 272, 16490–16497 (1997). (PMID: 10.1074/jbc.272.26.16490)
Johnsen, O., Murphy, P., Prydz, H. & Kolsto, A. B. Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription. Nucleic Acids Res. 26, 512–520 (1998). (PMID: 10.1093/nar/26.2.51294215089421508)
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). (PMID: 10.1016/j.molcel.2010.05.0042051343220513432)
Yamazaki, H., Katsuoka, F., Motohashi, H., Engel, J. D. & Yamamoto, M. Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins. Mol. Cell. Biol. 32, 808–816 (2012). (PMID: 10.1128/MCB.06543-112215896722158967)
de Aguiar Vallim, T. Q. et al. MAFG is a transcriptional repressor of bile acid synthesis and metabolism. Cell Metab. 21, 298–310 (2015). (PMID: 10.1016/j.cmet.2015.01.00743175904317590)
Balwierz, P. J. et al. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res. 24, 869–884 (2014). (PMID: 10.1101/gr.169508.11340096164009616)
Yang, Y. & Cvekl, A. Large Maf transcription factors: cousins of AP-1 proteins and important regulators of cellular differentiation. Einstein J. Biol. Med. 23, 2–11 (2007). (PMID: 10.23861/EJBM2007234721517482151748)
Hirotsu, Y. et al. Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 40, 10228–10239 (2012). (PMID: 10.1093/nar/gks82734882593488259)
Katsuoka, F., Yamazaki, H. & Yamamoto, M. Small Maf deficiency recapitulates the liver phenotypes of Nrf1- and Nrf2-deficient mice. Genes Cells 21, 1309–1319 (2016).
Yang, L. et al. Integrative transcriptome analyses of metabolic responses in mice define pivotal LncRNA metabolic regulators. Cell Metab. 24, 627–639 (2016). (PMID: 10.1016/j.cmet.2016.08.01951811185181118)
Patel, S. et al. Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol. Cell. Biol. 28, 6314–6328 (2008). (PMID: 10.1128/MCB.00763-0825774152577415)
Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012). (PMID: 10.1016/j.cell.2012.03.0172250079722500797)
Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009). (PMID: 10.1016/j.cell.2009.01.04236103293610329)
Dennis, M. D., Jefferson, L. S. & Kimball, S. R. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J. Biol. Chem. 287, 42890–42899 (2012). (PMID: 10.1074/jbc.M112.40482235222853522285)
Jimenez, V. et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol. Med. 10, e8791 (2018).
Kotkow, K. J. & Orkin, S. H. Complexity of the erythroid transcription factor NF-E2 as revealed by gene targeting of the mouse p18 NF-E2 locus. Proc. Natl Acad. Sci. USA 93, 3514–3518 (1996). (PMID: 10.1073/pnas.93.8.3514)
Uyeda, K. & Repa, J. J. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 4, 107–110 (2006). (PMID: 10.1016/j.cmet.2006.06.008)
Gross, D. N., Wan, M. & Birnbaum, M. J. The role of FOXO in the regulation of metabolism. Curr. Diab. Rep. 9, 208–214 (2009). (PMID: 10.1007/s11892-009-0034-5)
Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 109, 1125–1131 (2002). (PMID: 10.1172/JCI0215593)
Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122 (2015). (PMID: 10.1016/j.celrep.2015.04.02345767414576741)
Diederichs, S. The four dimensions of noncoding RNA conservation. Trends Genet. 30, 121–123 (2014). (PMID: 10.1016/j.tig.2014.01.004)
Roux, B. T., Heward, J. A., Donnelly, L. E., Jones, S. W. & Lindsay, M. A. Catalog of differentially expressed long non-coding RNA following activation of human and mouse innate immune response. Front. Immunol. 8, 1038 (2017). (PMID: 10.3389/fimmu.2017.0103855818035581803)
Widenmaier, S. B. et al. NRF1 Is an ER membrane sensor that is central to cholesterol homeostasis. Cell 171, 1094–1109 e1015 (2017). (PMID: 10.1016/j.cell.2017.10.003)
Okada, T. et al. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc. Natl Acad. Sci. USA 104, 8977–8982 (2007). (PMID: 10.1073/pnas.0608703104)
Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016). (PMID: 10.1093/nar/gkv11572668771926687719)
Roehr, J. T., Dieterich, C. & Reinert, K. Flexbar 3.0—SIMD and multicore parallelization. Bioinformatics 33, 2941–2942 (2017). (PMID: 10.1093/bioinformatics/btx3302854140328541403)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 10.1038/nmeth.19232238828622388286)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 10.1093/bioinformatics/bts6352310488623104886)
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010). (PMID: 10.1038/nbt.16212043646420436464)
Wagle, P., Nikolic, M. & Frommolt, P. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation. BMC Genomics 16, 487 (2015). (PMID: 10.1186/s12864-015-1695-x44863894486389)
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009). (PMID: 10.1093/bioinformatics/btp1201928944519289445)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 10.1186/s13059-014-0550-82551628125516281)
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012). (PMID: 10.1038/nprot.2012.01633343213334321)
Madsen, J. G. S. et al. Integrated analysis of motif activity and gene expression changes of transcription factors. Genome Res. 28, 243–255 (2018). (PMID: 10.1101/gr.227231.11757937885793788)
Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010). (PMID: 10.1038/nbt1010-104536072813607281)
Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016). (PMID: 10.1186/s13059-016-1012-249340144934014)
Troder, S. E. et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PloS One 13, e0196891 (2018). (PMID: 10.1371/journal.pone.019689159336905933690)
Severgnini, M. et al. A rapid two-step method for isolation of functional primary mouse hepatocytes: cell characterization and asialoglycoprotein receptor based assay development. Cytotechnology 64, 187–195 (2012). (PMID: 10.1007/s10616-011-9407-0)
Poupeau, A. & Postic, C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim. Biophys. Acta 1812, 995–1006 (2011). (PMID: 10.1016/j.bbadis.2011.03.015)
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 10.1093/bioinformatics/btq03328328242832824)
معلومات مُعتمدة: K12 GM106996 United States GM NIGMS NIH HHS; K22 HL139921 United States HL NHLBI NIH HHS; ZIA HL006159 United States ImNIH Intramural NIH HHS; ZIA HL006103 United States ImNIH Intramural NIH HHS
المشرفين على المادة: 0 (MAFG protein, human)
0 (MafG Transcription Factor)
0 (Mafg protein, mouse)
0 (RNA, Long Noncoding)
0 (RNA, Messenger)
0 (Repressor Proteins)
EC 2.7.11.1 (TOR Serine-Threonine Kinases)
IY9XDZ35W2 (Glucose)
تواريخ الأحداث: Date Created: 20200202 Date Completed: 20200511 Latest Revision: 20211204
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC6994702
DOI: 10.1038/s41467-020-14323-y
PMID: 32005828
قاعدة البيانات: MEDLINE