دورية أكاديمية

Structural Analysis of Glaucoma Brain and its Association With Ocular Parameters.

التفاصيل البيبلوغرافية
العنوان: Structural Analysis of Glaucoma Brain and its Association With Ocular Parameters.
المؤلفون: Gracitelli CPB; Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo., Duque-Chica GL; Institute of Psychology, University of São Paulo.; Department of Psychology, University of Medellin, Medellin, Colombia., Sanches LG; Brain Institute-Hospital Israelita Albert Einstein, São Paulo, Brazil., Moura AL; Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo.; Institute of Psychology, University of São Paulo., Nagy BV; Institute of Psychology, University of São Paulo.; Department of Mechatronics, Optics and Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary., Teixeira SH; Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo., Amaro E Jr; Brain Institute-Hospital Israelita Albert Einstein, São Paulo, Brazil., Ventura DF; Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo.; Institute of Psychology, University of São Paulo., Paranhos A Jr; Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo.; Brain Institute-Hospital Israelita Albert Einstein, São Paulo, Brazil.
المصدر: Journal of glaucoma [J Glaucoma] 2020 May; Vol. 29 (5), pp. 393-400.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, Inc Country of Publication: United States NLM ID: 9300903 Publication Model: Print Cited Medium: Internet ISSN: 1536-481X (Electronic) Linking ISSN: 10570829 NLM ISO Abbreviation: J Glaucoma Subsets: MEDLINE
أسماء مطبوعة: Publication: <2015- > : Philadelphia, PA : Wolters Kluwer Health, Inc.
Original Publication: New York, N.Y. : Raven Press, c1992-
مواضيع طبية MeSH: Magnetic Resonance Imaging*, Brain Diseases/*diagnostic imaging , Glaucoma/*diagnostic imaging , Occipital Lobe/*diagnostic imaging, Adult ; Aged ; Brain Diseases/physiopathology ; Cross-Sectional Studies ; Female ; Glaucoma/physiopathology ; Humans ; Intraocular Pressure/physiology ; Male ; Middle Aged ; Nerve Fibers/pathology ; Occipital Lobe/physiopathology ; Prospective Studies ; Retinal Ganglion Cells/pathology ; Tomography, Optical Coherence/methods ; Visual Acuity/physiology ; Visual Field Tests ; Visual Fields/physiology
مستخلص: Precis: Glaucoma patients presented a decreased occipital pole surface area in both hemispheres. Moreover, these parameters are independently correlated with functional and structural ocular parameters.
Purpose: The purpose of this study was to evaluate structural brain abnormalities in glaucoma patients using 3-Tesla magnetic resonance imaging and assess their correlation with associated structural and functional ocular findings.
Patients and Methods: This cross-sectional prospective study included 30 glaucoma patients and 18 healthy volunteers. All participants underwent standard automated perimetry, spectral-domain optical coherence tomography, and 3.0-Tesla magnetic resonance imaging.
Results: There was a significant difference between the surface area of the occipital pole in the left hemisphere of glaucoma patients (mean: 1253.9±149.3 mm) and that of control subjects (mean: 1341.9±129.8 mm), P=0.043. There was also a significant difference between the surface area of the occipital pole in the right hemisphere of glaucoma patients (mean: 1910.5±309.4 mm) and that of control subjects (mean: 2089.1±164.2 mm), P=0.029. There was no significant difference between the lingual, calcarine, superior frontal, and inferior frontal gyri of glaucoma patients and those of the control subjects (P>0.05 for all comparisons). The surface area of the occipital pole in the left hemisphere was significantly correlated with perimetry mean deviation values, visual acuity, age, and retinal nerve fiber layer thickness (P=0.001, <0.001, 0.010, and 0.006, respectively). The surface area of the occipital pole in the right hemisphere was significantly correlated with perimetry mean deviation values, visual field indices, visual acuity, age, and retinal nerve fiber layer thickness (P<0.001, 0.007, <0.001, 0.046, and <0.001, respectively).
Conclusion: Glaucoma patients presented a decreased occipital pole surface area in both hemispheres that independently correlated with functional and structural ocular parameters.
References: Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311:1901–1911.
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090.
Weber AJ, Chen H, Hubbard WC, et al. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 2000;41:1370–1379.
Yucel YH, Zhang Q, Weinreb RN, et al. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res. 2003;22:465–481.
Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–678.
Duyn JH. Study of brain anatomy with high-field MRI: recent progress. Magn Reson Imaging. 2010;28:1210–1215.
Nuzzi R, Dallorto L, Rolle T. Changes of visual pathway and brain connectivity in glaucoma: a systematic review. Front Neurosci. 2018;12:363.
Li C, Cai P, Shi L, et al. Voxel-based morphometry of the visual-related cortex in primary open angle glaucoma. Curr Eye Res. 2012;37:794–802.
Chen WW, Wang N, Cai S, et al. Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3T MR imaging. Invest Ophthalmol Vis Sci. 2013;54:545–554.
Bogorodzki P, Piatkowska-Janko E, Szaflik J, et al. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps. PLoS One. 2014;9:e93682.
Ito Y, Shimazawa M, Chen YN, et al. Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res. 2009;89:246–255.
Gupta N, Greenberg G, de Tilly LN, et al. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol. 2009;93:56–60.
Furlanetto RL, Teixeira SH, Gracitelli CPB, et al. Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma. PLoS One. 2018;13:e0194038.
Medeiros FA, Alencar LM, Zangwill LM, et al. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch Ophthalmol. 2009;127:1250–1256.
Medeiros FA, Alencar LM, Zangwill LM, et al. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009;116:1125.e1–1233.e3.
Leung CK, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–1562.
Artes PH, Chauhan BC. Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res. 2005;24:333–354.
Anderson DR, Hodapp E. Clinical Decisions in Glaucoma. University of Miami, Florida: Mo Mosby-Year Book; 1993:52–61.
Sponsel WE, Ritch R, Stamper R, et al. Prevent Blindness America visual field screening study. The Prevent Blindness America Glaucoma Advisory Committee. Am J Ophthalmol. 1995;120:699–708.
Sponsel WE, Arango S, Trigo Y, et al. Clinical classification of glaucomatous visual field loss by frequency doubling perimetry. Am J Ophthalmol. 1998;125:830–836.
Medeiros FA, Lisboa R, Weinreb RN, et al. Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology. 2013;120:736–744.
Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–194.
Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA. 2000;97:11050–11055.
Rosas HD, Liu AK, Hersch S, et al. Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology. 2002;58:695–701.
Kuperberg GR, Broome MR, McGuire PK, et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry. 2003;60:878–888.
Afonso RF, Balardin JB, Lazar S, et al. Greater cortical thickness in elderly female yoga practitioners-a cross-sectional study. Front Aging Neurosci. 2017;9:201.
Fischl B, van der Kouwe A, Destrieux C, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22.
Burton P, Gurrin L, Sly P. Extending the simple linear regression model to account for correlated responses: an introduction to generalized estimating equations and multi-level mixed modelling. Stat Med. 1998;17:1261–1291.
Hanley JA, Negassa A, Edwardes MD, et al. Statistical analysis of correlated data using generalized estimating equations: an orientation. Am J Epidemiol. 2003;157:364–375.
Field CA, Welsh AH. Bootstrapping clustered data. J R Stat Soc Series B Stat Methodol. 2007;69:369–390.
Perry VH, Oehler R, Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience. 1984;12:1101–1123.
Gupta N, Yucel YH. What changes can we expect in the brain of glaucoma patients? Surv Ophthalmol. 2007;52(suppl 2):S122–S126.
Zhang YQ, Li J, Xu L, et al. Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmol. 2012;90:e295–e302.
Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visual cortex in glaucoma: comparing fMRI measurements of cortical function with visual field loss. Prog Retin Eye Res. 2007;26:38–56.
Duncan RO, Sample PA, Weinreb RN, et al. Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk. Invest Ophthalmol Vis Sci. 2007;48:733–744.
Qing G, Zhang S, Wang B, Wang N. Functional MRI signal changes in primary visual cortex corresponding to the central normal visual field of patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4627–4634.
Gerente VM, Schor RR, Chaim KT, et al. Evaluation of glaucomatous damage via functional magnetic resonance imaging, and correlations thereof with anatomical and psychophysical ocular findings. PLoS One. 2015;10:e0126362.
Amaro E Jr, Barker GJ. Study design in fMRI: basic principles. Brain Cogn. 2006;60:220–232.
Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–769.
Winkler AM, Kochunov P, Blangero J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53:1135–1146.
Thompson PM, Cannon TD, Narr KL, et al. Genetic influences on brain structure. Nat Neurosci. 2001;4:1253–1258.
Glahn DC, Thompson PM, Blangero J. Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Hum Brain Mapp. 2007;28:488–501.
Honea RA, Meyer-Lindenberg A, Hobbs KB, et al. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol Psychiatry. 2008;63:465–474.
McDonald C, Marshall N, Sham PC, et al. Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives. Am J Psychiatry. 2006;163:478–487.
Panizzon MS, Fennema-Notestine C, Eyler LT, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19:2728–2735.
Hofman MA. Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav Evol. 1985;27:28–40.
Rao DC. An overview of the genetic dissection of complex traits. Adv Genet. 2008;60:3–34.
Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62:847–855.
Ankney CD. The brain size/IQ debate. Nature. 1992;360:292.
Ankney CD. Differences in brain size. Nature. 1992;358:532.
Hernowo AT, Boucard CC, Jansonius NM, et al. Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52:2758–2766.
Zikou AK, Kitsos G, Tzarouchi LC, et al. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol. 2012;33:128–134.
Williams AL, Lackey J, Wizov SS, et al. Evidence for widespread structural brain changes in glaucoma: a preliminary voxel-based MRI study. Invest Ophthalmol Vis Sci. 2013;54:5880–5887.
Allen JS, Bruss J, Brown CK, et al. Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging. 2005;26:1245–1260; discussion 1279–1282.
Lemaitre H, Goldman AL, Sambataro F, et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging. 2012;33:617.e1–617.e9.
Fotenos AF, Snyder AZ, Girton LE, et al. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology. 2005;64:1032–1039.
Good CD, Johnsrude IS, Ashburner J, et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14(pt 1):21–36.
تواريخ الأحداث: Date Created: 20200222 Date Completed: 20200928 Latest Revision: 20210208
رمز التحديث: 20221213
DOI: 10.1097/IJG.0000000000001470
PMID: 32079996
قاعدة البيانات: MEDLINE