دورية أكاديمية

High Surface Reactivity and Biocompatibility of Y 2 O 3 NPs in Human MCF-7 Epithelial and HT-1080 FibroBlast Cells.

التفاصيل البيبلوغرافية
العنوان: High Surface Reactivity and Biocompatibility of Y 2 O 3 NPs in Human MCF-7 Epithelial and HT-1080 FibroBlast Cells.
المؤلفون: Akhtar MJ; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia., Ahamed M; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia., Alrokayan SA; Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia., Ramamoorthy MM; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia., Alaizeri ZM; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
المصدر: Molecules (Basel, Switzerland) [Molecules] 2020 Mar 03; Vol. 25 (5). Date of Electronic Publication: 2020 Mar 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: MDPI Country of Publication: Switzerland NLM ID: 100964009 Publication Model: Electronic Cited Medium: Internet ISSN: 1420-3049 (Electronic) Linking ISSN: 14203049 NLM ISO Abbreviation: Molecules Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, Switzerland : MDPI, c1995-
مواضيع طبية MeSH: Metal Nanoparticles/*chemistry , Yttrium/*chemistry, Autophagy/drug effects ; Cell Line, Tumor ; Cell Survival/drug effects ; Humans ; MCF-7 Cells ; Metal Nanoparticles/adverse effects ; Nanomedicine/methods ; Oxidative Stress/drug effects ; Reactive Oxygen Species/metabolism ; Zinc Oxide/chemistry
مستخلص: This study aimed to generate a comparative data on biological response of yttrium oxide nanoparticles (Y 2 O 3 NPs) with the antioxidant CeO 2 NPs and pro-oxidant ZnO NPs. Sizes of Y 2 O 3 NPs were found to be in the range of 35±10 nm as measured by TEM and were larger from its hydrodynamic sizes in water (1004 ± 134 nm), PBS (3373 ± 249 nm), serum free culture media (1735 ± 305 nm) and complete culture media (542 ± 108 nm). Surface reactivity of Y 2 O 3 NPs with bovine serum albumin (BSA) was found significantly higher than for CeO 2 and ZnO NPs. The displacement studies clearly suggested that adsorption to either BSA, filtered serum or serum free media was quite stable, and was dependent on whichever component interacted first with the Y 2 O 3 NPs. Enzyme mimetic activity, like that of CeO 2 NPs, was not detected for the NPs of Y 2 O 3 or ZnO. Cell viability measured by MTT and neutral red uptake (NRU) assays suggested Y 2 O 3 NPs were not toxic in human breast carcinoma MCF-7 and fibroblast HT-1080 cells up to the concentration of 200 μg/mL for a 24 h treatment period. Oxidative stress markers suggested Y 2 O 3 NPs to be tolerably non-oxidative and biocompatible. Moreover, mitochondrial potential determined by JC-1 as well as lysosomal activity determined by lysotracker (LTR) remained un-affected and intact due to Y 2 O 3 and CeO 2 NPs whereas, as expected, were significantly induced by ZnO NPs. Hoechst-PI dual staining clearly suggested apoptotic potential of only ZnO NPs. With high surface reactivity and biocompatibility, NPs of Y 2 O 3 could be a promising agent in the field of nanomedicine.
Competing Interests: The authors declare no conflict of interest.
References: Anal Biochem. 1976 May 7;72:248-54. (PMID: 942051)
J Immunol Methods. 1983 Dec 16;65(1-2):55-63. (PMID: 6606682)
Anal Biochem. 1979 Jun;95(2):351-8. (PMID: 36810)
Chem Commun (Camb). 2010 Apr 28;46(16):2736-8. (PMID: 20369166)
Biomacromolecules. 2017 Jun 12;18(6):1762-1771. (PMID: 28511014)
PLoS One. 2013 May 31;8(5):e64690. (PMID: 23741371)
Neurol Res. 2015 Jul;37(7):624-32. (PMID: 25786672)
Nanomaterials (Basel). 2019 Nov 29;9(12):. (PMID: 31795404)
Clin Chim Acta. 2018 Dec;487:186-196. (PMID: 30291894)
J Immunotoxicol. 2019 Dec;16(1):87-124. (PMID: 31195861)
ACS Nano. 2012 May 22;6(5):3888-97. (PMID: 22509739)
Sci Rep. 2015 Sep 08;5:13876. (PMID: 26347142)
Autophagy. 2005 Apr;1(1):23-36. (PMID: 16874023)
Rep Pract Oncol Radiother. 2018 Jul-Aug;23(4):300-308. (PMID: 30100819)
Free Radic Biol Med. 2014 Oct;75:140-8. (PMID: 25066531)
Int J Nanomedicine. 2012;7:845-57. (PMID: 22393286)
J Nanosci Nanotechnol. 2019 Sep 1;19(9):5418-5425. (PMID: 30961691)
Biochim Biophys Acta Gen Subj. 2020 Jan;1864(1):129452. (PMID: 31676295)
J Trace Elem Med Biol. 2017 May;41:79-90. (PMID: 28347467)
Nanoscale Res Lett. 2009 Nov 24;5(2):263-273. (PMID: 20672046)
Biomaterials. 2008 Jun;29(18):2705-9. (PMID: 18395249)
Free Radic Biol Med. 1999 Sep;27(5-6):612-6. (PMID: 10490282)
Colloids Surf B Biointerfaces. 2012 Jun 15;95:96-102. (PMID: 22421416)
Adv Mater. 2012 Nov 8;24(42):5755-61. (PMID: 22915170)
Toxicology. 2010 Oct 9;276(2):95-102. (PMID: 20654680)
Small. 2016 Nov;12(41):5759-5768. (PMID: 27593892)
Biomater Sci. 2018 Mar 26;6(4):726-745. (PMID: 29308496)
MethodsX. 2019 Sep 14;6:2134-2140. (PMID: 31667112)
Biomaterials. 2007 Nov;28(31):4600-7. (PMID: 17675227)
Curr Drug Metab. 2019;20(11):907-917. (PMID: 31702485)
Biomaterials. 2016 Aug;97:10-21. (PMID: 27155363)
Clin Chim Acta. 2014 Sep 25;436:78-92. (PMID: 24836529)
J Phys Chem B. 2015 Apr 23;119(16):5309-14. (PMID: 25822086)
Int J Nanomedicine. 2014 Mar 12;9:1379-91. (PMID: 24648735)
FEBS Lett. 2000 Dec 1;486(1):10-3. (PMID: 11108833)
J Colloid Interface Sci. 2018 Jul 1;521:261-279. (PMID: 29510868)
Int J Mol Sci. 2016 Sep 22;17(10):. (PMID: 27669221)
Int J Nanomedicine. 2019 Feb 07;14:993-1009. (PMID: 30799918)
Toxicology. 1992;72(2):175-87. (PMID: 1566279)
Nat Rev Mol Cell Biol. 2014 Jun;15(6):411-21. (PMID: 24854789)
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):802-813. (PMID: 28115205)
Int J Nanomedicine. 2019 Sep 26;14:7861-7878. (PMID: 31576128)
Biomacromolecules. 2017 Dec 11;18(12):3869-3880. (PMID: 29032674)
J Cell Sci. 2016 Dec 15;129(24):4622-4632. (PMID: 27875278)
J Colloid Interface Sci. 2015 Sep 1;453:21-27. (PMID: 25965428)
Proc Natl Acad Sci U S A. 1991 May 1;88(9):3671-5. (PMID: 2023917)
Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:365-373. (PMID: 30606544)
Nat Protoc. 2008;3(7):1125-31. (PMID: 18600217)
Nanoscale. 2018 Feb 15;10(7):3235-3244. (PMID: 29383361)
Toxicol Sci. 2008 Feb;101(2):239-53. (PMID: 17872897)
Sci Rep. 2017 Jul 12;7(1):5178. (PMID: 28701707)
Eur J Biochem. 1974 Sep 16;47(3):469-74. (PMID: 4215654)
J Biol Chem. 2016 Jul 1;291(27):14170-84. (PMID: 27226546)
Nanomedicine (Lond). 2019 Oct;14(19):2519-2533. (PMID: 31317822)
Acc Chem Res. 2017 Jun 20;50(6):1383-1390. (PMID: 28480714)
Antioxid Redox Signal. 2011 Jul 1;15(1):147-51. (PMID: 21375475)
Environ Sci Pollut Res Int. 2019 Feb 1;:. (PMID: 30710327)
Methods Enzymol. 1984;105:121-6. (PMID: 6727660)
Int J Nanomedicine. 2017 Jan 24;12:809-825. (PMID: 28182147)
J Microsc. 2014 Jul;255(1):7-19. (PMID: 24831993)
معلومات مُعتمدة: RGP-1440-097 Deanship of Scientific Research, King Saud University
فهرسة مساهمة: Keywords: NP surface; Surface adsorption; autophagy; biocompatibility; nanomedicine; nanotoxicology
المشرفين على المادة: 0 (Reactive Oxygen Species)
58784XQC3Y (Yttrium)
SOI2LOH54Z (Zinc Oxide)
X8071685XT (yttria)
تواريخ الأحداث: Date Created: 20200307 Date Completed: 20201214 Latest Revision: 20201214
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7179248
DOI: 10.3390/molecules25051137
PMID: 32138335
قاعدة البيانات: MEDLINE
الوصف
تدمد:1420-3049
DOI:10.3390/molecules25051137