دورية أكاديمية

Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals.

التفاصيل البيبلوغرافية
العنوان: Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals.
المؤلفون: Wolff AM; Graduate Program in Biophysics, University of California, San Francisco, San Francisco, California, USA.; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA., Young ID; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Sierra RG; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Brewster AS; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Martynowycz MW; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California, USA.; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA., Nango E; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan., Sugahara M; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan., Nakane T; Department of Biological Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan., Ito K; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.; Laboratory for Drug Discovery, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan., Aquila A; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Bhowmick A; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Biel JT; Graduate Program in Biophysics, University of California, San Francisco, San Francisco, California, USA.; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA., Carbajo S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Cohen AE; SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Cortez S; Department of Biology, San Francisco State University, San Francisco, California, USA., Gonzalez A; SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Hino T; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho, Minami, Tottori 680-8552, Japan.; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan., Im D; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan., Koralek JD; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Kubo M; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan., Lazarou TS; Department of Chemistry, New York University, New York, USA., Nomura T; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan., Owada S; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan., Samelson AJ; Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, USA., Tanaka T; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan., Tanaka R; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan., Thompson EM; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.; Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California, USA., van den Bedem H; Bioscience Department, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Woldeyes RA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.; Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, California, USA., Yumoto F; Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0034, Japan., Zhao W; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA., Tono K; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan., Boutet S; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA., Iwata S; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan., Gonen T; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California, USA.; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA.; Department of Physiology, University of California, Los Angeles, Los Angeles, California, USA., Sauter NK; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA., Fraser JS; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA., Thompson MC; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.
المصدر: IUCrJ [IUCrJ] 2020 Feb 26; Vol. 7 (Pt 2), pp. 306-323. Date of Electronic Publication: 2020 Feb 26 (Print Publication: 2020).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: International Union of Crystallography Country of Publication: England NLM ID: 101623101 Publication Model: eCollection Cited Medium: Print ISSN: 2052-2525 (Print) Linking ISSN: 20522525 NLM ISO Abbreviation: IUCrJ Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Chester : International Union of Crystallography, [2014]-
مستخلص: Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.
(© Alexander M. Wolff et al. 2020.)
References: Acta Crystallogr D Biol Crystallogr. 2015 Nov;71(Pt 11):2328-43. (PMID: 26527148)
Elife. 2015 Sep 30;4:. (PMID: 26422513)
Elife. 2012 Dec 18;1:e00311. (PMID: 23251785)
J Synchrotron Radiat. 2017 Sep 01;24(Pt 5):1086-1091. (PMID: 28862633)
Sci Rep. 2014 Aug 12;4:6026. (PMID: 25113598)
Struct Dyn. 2015;2(4):. (PMID: 26726311)
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. (PMID: 22505256)
Sci Data. 2016 Apr 12;3:160021. (PMID: 27070998)
J Synchrotron Radiat. 2015 May;22(3):532-7. (PMID: 25931065)
Nat Struct Biol. 1998 Aug;5 Suppl:634-7. (PMID: 9699611)
Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):85-97. (PMID: 29533234)
BMC Bioinformatics. 2017 Nov 29;18(1):529. (PMID: 29187165)
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. (PMID: 21460441)
Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):877-894. (PMID: 30198898)
J Appl Crystallogr. 2016 Apr 18;49(Pt 3):1035-1041. (PMID: 27275146)
Nat Methods. 2017 Feb 13;14(4):399-402. (PMID: 28192420)
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. (PMID: 21460454)
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92. (PMID: 21460446)
Nat Commun. 2014;5:3309. (PMID: 24525480)
Structure. 2019 Mar 5;27(3):545-548.e2. (PMID: 30661853)
IUCrJ. 2017 May 24;4(Pt 4):439-454. (PMID: 28875031)
J Synchrotron Radiat. 2015 Mar;22(2):239-48. (PMID: 25723925)
Nature. 2016 Dec 15;540(7633):400-405. (PMID: 27926732)
J Appl Crystallogr. 2016 Mar 29;49(Pt 2):680-689. (PMID: 27047311)
Nature. 2009 Dec 3;462(7273):669-73. (PMID: 19956261)
Struct Dyn. 2015 Aug 18;2(5):054302. (PMID: 26798825)
Elife. 2013 Nov 19;2:e01345. (PMID: 24252878)
Nat Chem. 2018 Jan;10(1):31-37. (PMID: 29256511)
Nature. 2005 Nov 3;438(7064):117-21. (PMID: 16267559)
Curr Opin Struct Biol. 2019 Oct;58:286-293. (PMID: 31345629)
J Appl Crystallogr. 2016 May 11;49(Pt 3):1029-1034. (PMID: 27275145)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. (PMID: 20383002)
Nat Methods. 2019 May;16(5):369-379. (PMID: 31040436)
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. (PMID: 20124692)
J Synchrotron Radiat. 2019 Mar 1;26(Pt 2):595-602. (PMID: 30855272)
Nature. 2015 Sep 24;525(7570):486-90. (PMID: 26352473)
Science. 2016 Dec 23;354(6319):1552-1557. (PMID: 28008064)
Nat Methods. 2016 Jan;13(1):59-62. (PMID: 26619013)
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4793-8. (PMID: 15051877)
J Appl Crystallogr. 2014 May 29;47(Pt 3):1118-1131. (PMID: 24904246)
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. (PMID: 19461840)
J Vis Exp. 2016 Sep 20;(115):. (PMID: 27683972)
Structure. 2019 Oct 1;27(10):1594-1600.e2. (PMID: 31422911)
Rev Sci Instrum. 2014 Mar;85(3):033110. (PMID: 24689567)
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):506-518. (PMID: 29872002)
J Vis Exp. 2018 Aug 14;(138):. (PMID: 30175998)
Nat Methods. 2014 Sep;11(9):927-930. (PMID: 25086503)
Sci Rep. 2017 Apr 6;7(1):703. (PMID: 28386083)
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9569-9573. (PMID: 30171169)
Nat Struct Mol Biol. 2012 Mar 11;19(4):411-6. (PMID: 22407016)
Nat Methods. 2015 Jan;12(1):61-3. (PMID: 25384243)
معلومات مُعتمدة: R01 GM117126 United States GM NIGMS NIH HHS; R01 GM123159 United States GM NIGMS NIH HHS; T32 GM008284 United States GM NIGMS NIH HHS; T32 GM064337 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: MicroED; batch crystallization; microcrystals; serial crystallography
تواريخ الأحداث: Date Created: 20200310 Latest Revision: 20231113
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC7055375
DOI: 10.1107/S205225252000072X
PMID: 32148858
قاعدة البيانات: MEDLINE
الوصف
تدمد:2052-2525
DOI:10.1107/S205225252000072X