دورية أكاديمية

Rapid structural characterisation of benzylisoquinoline and aporphine alkaloids from Ocotea spixiana acaricide extract by HPTLC-DESI-MS n .

التفاصيل البيبلوغرافية
العنوان: Rapid structural characterisation of benzylisoquinoline and aporphine alkaloids from Ocotea spixiana acaricide extract by HPTLC-DESI-MS n .
المؤلفون: Conceição RS; Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil.; Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada., Reis IMA; Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil., Cerqueira APM; Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil., Perez CJ; Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada., Junior MCDS; Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil., Branco A; Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil., Ifa DR; Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada., Botura MB; Department of Health, State University of Feira de Santana, Feira de Santana, Bahia, Brazil.
المصدر: Phytochemical analysis : PCA [Phytochem Anal] 2020 Nov; Vol. 31 (6), pp. 711-721. Date of Electronic Publication: 2020 Apr 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 9200492 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1565 (Electronic) Linking ISSN: 09580344 NLM ISO Abbreviation: Phytochem Anal Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, Sussex, UK : Wiley, c1990-
مواضيع طبية MeSH: Acaricides*/pharmacology , Alkaloids*/pharmacology , Aporphines*/pharmacology , Benzylisoquinolines* , Ocotea*, Plant Extracts/pharmacology ; Tandem Mass Spectrometry
مستخلص: Introduction: Lauraceae alkaloids are a structurally diverse class of plant specialised secondary metabolites that play an important role in modern pharmacotherapy, being useful as well as model compounds for the development of synthetic analogues. However, alkaloids characterisation is challenging due to low concentrations, the complexity of plant extracts, and long processes for accurate structural determinations.
Objective: The use of high-performance thin layer chromatography coupled with desorption electrospray ionisation multistage mass spectrometry (HPTLC DESI-MS n ) as a fast tool to identify alkaloids present in Ocotea spixiana extract and evaluate the extract's acaricide activity.
Methods: Ocotea spixiana twigs were extracted by conventional liquid-liquid partitioning. HPTLC analysis of the ethyl acetate extract was performed to separate isobaric alkaloids prior to DESI-MS n analysis, performed from MS 3 up to MS 7 . The extract's acaricide activity against Rhipicephalus microplus was evaluated by in vitro (larval immersion test) and in silico tests.
Results: HPTLC-DESI-MS n analysis was performed to identify a total of 13 aporphine and four benzylisoquinoline-type alkaloids reported for the first time in O. spixiana. In vitro evaluation of the extract and the alkaloid boldine showed significant activity against R. microplus larvae. It was established in silico that boldine had important intermolecular interactions with R. microplus acetylcholinesterase enzyme.
Conclusion: The present study demonstrated that HPTLC-DESI-MS n is a useful analytical tool to identify isoquinoline alkaloids in plant extracts. The acaricide activity of the O. spixiana ethyl acetate extract can be correlated to the presence of alkaloids.
(© 2020 John Wiley & Sons, Ltd.)
References: Van Der Werff H. A key to the genera of Lauraceae in the New World. Ann Mo Bot Gard. 1991;78(2):377-387.
Custódio DL, Veiga Junior VF. Lauraceae alkaloids. RSC Adv. 2014;4:21864-21890.
Archila EG, Suárez LEC. Phytochemical study of leaves of Ocotea caudata from Colombia. Nat Prod Res. 2017;32(2):195-201.
Conceição RS, Carneiro MMA, Reis IMA, et al. In vitro acaricide activity of Ocotea aciphylla (Nees) Mez.(Lauraceae) extracts and identification of the compounds from the active fractions. Ticks Tick-Borne Dis. 2017;8(2):275-282.
Figueiredo A, Nascimento LM, Lopes LG, et al. First report of the effect of Ocotea elegans essential oil on Rhipicephalus (Boophilus) microplus. Vet Parasitol. 2018;252:131-136.
Liu Y, Cheng E, Rakotondraibe LH, et al. Antiproliferative compounds from Ocotea macrocarpa from the Madagascar dry forest. Tetrahedron Lett. 2015;56(23):3630-3632.
Ballabeni V, Tognolini M, Giorgio C, Bertoni S, Bruni R, Barocelli E. Ocotea quixos lam. Essential oil: in vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia. 2010;81(4):289-295.
Cassiano DSA, Reis IMA, Estrela IO, et al. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percoriacea extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. Comput Biol Chem. 2019;83:107-129.
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629-661.
Khan RA. Natural products chemistry: the emerging trends and prospective goals. Saudi Pharmaceut J. 2018;26(5):739-753.
Talaty N, Takáts Z, Cooks RG. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst. 2005;130(12):1624-1633.
Cheng SC, Bhat SM, Lee CW, Shiea J. Thin layer chromatography combined with electrospray ionization mass spectrometry for characterizing herbal compounds. Int J Mass Spectrom. 2018;434:264-271.
Ifa DR, Wiseman JM, Song Q, Cooks RG. Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom. 2007;259:8-15.
Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471-473.
Ifa DR, Wu C, Ouyang Z, Cooks RG. Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst. 2010;135(4):669-681.
Kennedy JH, Wiseman JM. Direct analysis of Salvia divinorum leaves for salvinorin a by thin layer chromatography and desorption electrospray ionization multi-stage tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(9):1305-1311.
Gocan S, Cimpan G. Review of the analysis of medicinal plants by TLC: modern approaches. J Liq Chromatogr Relat Technol. 2004;27:1377-1411.
Van Berkel GJ, Ford MJ, Deibel MA. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Anal Chem. 2005;77(5):1207-1215.
Paglia G, Ifa DR, Wu C, Corso G, Cooks G. Desorption electrospray ionization mass spectrometry analysis of lipids after two-dimensional high-performance thin-layer chromatography partial separation. Anal Chem. 2010;82(5):1744-1750.
Van Berkel GJ, Tomkins BA, Kertesz V. Thin-layer chromatography/desorption electrospray ionization mass spectrometry: investigation of goldenseal alkaloids. Anal Chem. 2007;79(7):2778-2789.
Bagatela BS, Lopes AP, Cabral EC, Perazzo FF, Ifa DR. High-performance thin-layer chromatography/desorption electrospray ionization mass spectrometry imaging of the crude extract from the peels of Citrus aurantium L.(Rutaceae). Rapid Commun Mass Spectrom. 2015;29(16):1530-1534.
Silva WC, Martins JRS, de Souza HEM, et al. Toxicity of Piper aduncum L.(Piperales: Piperaceae) from the Amazon forest for the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol. 2009;164(2-4):267-274.
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612.
Allen WJ, Balius TE, Mukherjee S, et al. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015;36(15):1132-1156.
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269-288.
Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation. J Comput Chem. 1992;13(4):505-524.
Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:443-447.
Stévigny C, Jiwan JLH, Rozenberg R, de Hoffmann E, Quetin-Leclercq J. Key fragmentation patterns of aporphine alkaloids by electrospray ionization with multistage mass spectrometry. Rapid Commun Mass Spectrom. 2004;18(5):523-528.
Schmidt J, Raith K, Boettcher C, Zenk MH. Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. Eur J Mass Spectrom. 2005;11(3):325-333.
Shim HJ, Lee JY, Kim B, Hong J. General fragmentations of alkaloids in electrospray ionization tandem mass spectrometry. Mass Spectrom Lett. 2013;4(4):79-82.
Soares ER, da Silva FM, de Almeida RA, et al. Direct infusion ESI-IT-MSn alkaloid profile and isolation of tetrahydroharman and other alkaloids from Bocageopsis pleiosperma maas (Annonaceae). Phytochem Anal. 2015;26(5):339-345.
Quiroz-Carreño S, Céspedes-Acuña CL, Seigler DS, Alarcón-Enos J. Identification of structurally diverse alkaloids in Talguenea quinquinervia (Gill. et Hook) by liquid chromatography/electrospray ionisation tandem mass spectroscopy and insecticidal activity. Phytochem Anal. 2019;30(6):635-643.
Yan R, Wang W, Guo J, Liu H, Zhang J, Yang B. Studies on the alkaloids of the bark of Magnolia officinalis: isolation and on-line analysis by HPLC-ESI-MSn. Molecules. 2013;18(7):7739-7750.
Xu X, Sun CR, Dai XJ, Hu RL, Pan YJ, Yang ZF. LC/MS guided isolation of alkaloids from lotus leaves by pH-zone-refining counter-current chromatography. Molecules. 2011;16(3):2551-2560.
Meyer GMJ, Meyer MR, Wissenbach DK, Maurer HH. Studies on the metabolism and toxicological detection of glaucine, an isoquinoline alkaloid from Glaucium flavum (Papaveraceae), in rat urine using GC-MS, LC-MSn and LC-high-resolution MSn. J Mass Spectrom. 2013;48(1):24-41.
Singh A, Bajpai V, Kumar S, Rawat AKS, Kumar B. Analysis of isoquinoline alkaloids from Mahonia leschenaultia and Mahonia napaulensis roots using UHPLC-Orbitrap-MSn and UHPLC-QqQLIT-MS/MS. J Pharmaceut Anal. 2017;7(2):77-86.
Garcez WS, Yoshida M, Gottlieb OR. Benzylisoquinoline alkaloids and flavonols from Ocotea vellosiana. Phytochemistry. 1995;39(4):815-816.
Cava MP, Venkateswarlu A. Dehydroocopodine, dicentrinone, and other alkaloids from Ocotea macropoda and Hernandia jamaicensis. Tetrahedron. 1971;27(13):2639-2643.
Vecchietti V, Casagrande C, Ferrari G. Alkaloids of Ocotea brachybotra. II Farmaco. 1977;32(11):767-769.
Vecchietti V, Casagrande C, Ferrari G, Severini-Ricca G. New aporphine alkaloids of Ocotea minarum. II Farmaco. 1979;34(10):829-840.
Franca NC, Giesbrecht AM, Gottlieb OR, Magalhães AF, Magalhães EG, Maia JGS. Benzylisoquinolines from Ocotea species. Phytochemistry. 1975;14:1671-1672.
Morais LC, Barbosa-Filho JM, Almeida RN. Central depressant effects of reticuline extracted from Ocotea duckei in rats and mice. J Ethnopharmacol. 1998;62(1):57-61.
Zanin SMW, Miguel OG, Montrucchio DP, Costa CK, Lagos JB, Lordello ALL. Mudas de Ocotea puberula (Lauraceae): identificação e monitoramento de alcaloides aporfinoides. Química Nova. 2011;34(5):743-747.
Medeiros MAA, Nunes XP, Barbosa-Filho JM, et al. (S)-Reticuline induces vasorelaxation through the blockade of L-type Ca2+ channels. Naunyn Schmiedebergs Arch Pharmacol. 2009;379(2):115-125.
Silva IG, Barbosa-Filho JM, da Silva MS, de Lacerda CDG, da Cunha EVL. Coclaurine from Ocotea duckei. Biochem Syst Ecol. 2002;30(9):881-883.
Cava MP, Behforouz M, Mitchell MJ. Ocotea alkaloids: variabiline, a novel aminoaporphine. Tetrahedron Lett. 1972;13(46):4647-4649.
Lee SS, Lin YJ, Chen CK, Liu KCS, Chen CH. Quaternary alkaloids from Litsea cubeba and Cryptocarya konishii. J Nat Prod. 1993;56(11):1971-1976.
Seigler DS. Plant secondary metabolism. New York: Springer-Verlag; 2012:759.
Santos LB, Souza JK, Papassoni B, et al. Efficacy of extracts from plants of the Brazilian Pantanal against Rhipicephalus (Boophilus) microplus. Rev Bras Parasitol Vet. 2013;22(4):532-538.
Tara S, Elcock AH, Kirchhoff PD, et al. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge. Biopolymers. 1998;46(7):465-474.
Houghton PJ, Ren Y, Howes MJ. Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep. 2006;23(2):181-199.
Atanasova M, Stavrakov G, Philipova I, Zheleva D, Yordanov N, Doytchinova I. Galantamine derivatives with indole moiety: docking, design, synthesis and acetylcholinesterase inhibitory activity. Bioorg Med Chem. 2015;23(17):5382-5389.
Kostelnik A, Pohanka M. Inhibition of acetylcholinesterase and butyrylcholinesterase by a plant secondary metabolite boldine. Biomed Res Int. 2018;20(18):1-5.
معلومات مُعتمدة: 409592/2018-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Universidade Estadual de Feira de Santana (UEFS); Fundacão de Amparo à Pesquisa do Estado da Bahia (FAPESB); 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
فهرسة مساهمة: Keywords: HPTLC-DESI-MSn; Ocotea spixiana; acaricide activity; alkaloids
المشرفين على المادة: 0 (Acaricides)
0 (Alkaloids)
0 (Aporphines)
0 (Benzylisoquinolines)
0 (Plant Extracts)
تواريخ الأحداث: Date Created: 20200416 Date Completed: 20201208 Latest Revision: 20201214
رمز التحديث: 20231215
DOI: 10.1002/pca.2935
PMID: 32291820
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1565
DOI:10.1002/pca.2935