دورية أكاديمية

TRPM6 and TRPM7: Novel players in cell intercalation during vertebrate embryonic development.

التفاصيل البيبلوغرافية
العنوان: TRPM6 and TRPM7: Novel players in cell intercalation during vertebrate embryonic development.
المؤلفون: Runnels LW; Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA., Komiya Y; Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.; Faculty of Industrial Science and Technology, Tokyo University of Science, Yamakoshi-gun, Hokkaido, Japan.
المصدر: Developmental dynamics : an official publication of the American Association of Anatomists [Dev Dyn] 2020 Aug; Vol. 249 (8), pp. 912-923. Date of Electronic Publication: 2020 May 26.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 9201927 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0177 (Electronic) Linking ISSN: 10588388 NLM ISO Abbreviation: Dev Dyn Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley, c1992-
مواضيع طبية MeSH: Gene Expression Regulation, Developmental*, Magnesium/*chemistry , Protein Serine-Threonine Kinases/*physiology , TRPM Cation Channels/*physiology , Xenopus Proteins/*physiology , Xenopus laevis/*metabolism, 3T3 Cells ; Animals ; Cell Movement ; Embryonic Development ; Humans ; Ions ; Magnesium/metabolism ; Mice ; Neural Plate/metabolism ; Neural Tube/metabolism ; Neural Tube Defects/genetics ; Neural Tube Defects/metabolism ; Neurulation ; Protein Domains ; Protein Serine-Threonine Kinases/genetics ; Signal Transduction ; TRPM Cation Channels/genetics ; TRPM Cation Channels/metabolism ; Xenopus Proteins/genetics ; Zebrafish
مستخلص: A common theme in organogenesis is how the final structure of organs emerge from epithelial tube structures, with the formation of the neural tube being one of the best examples. Two types of cell movements co-occur during neural tube closure involving the migration of cells toward the midline of the embryo (mediolateral intercalation or convergent extension) as well as the deep movement of cells from inside the embryo to the outside of the lateral side of the neural plate (radial intercalation). Failure of either type of cell movement will prevent neural tube closure, which can produce a range of neural tube defects (NTDs), a common congenital disease in humans. Numerous studies have identified signaling pathways that regulate mediolateral intercalation during neural tube closure. Less understood are the pathways that govern radial intercalation. Using the Xenopus laevis system, our group reported the identification of transient receptor potential (TRP) channels, TRPM6 and TRPM7, and the Mg 2+ ion they conduct, as novel and key factors regulating both mediolateral and radial intercalation during neural tube closure. Here we broadly discuss tubulogenesis and cell intercalation from the perspective of neural tube closure and the respective roles of TRPM7 and TRPM6 in this critical embryonic process.
(© 2020 Wiley Periodicals, Inc.)
References: Iruela-Arispe ML, Beitel GJ. Tubulogenesis. Development. 2013;140(14):2851-2855. https://doi.org/10.1242/dev.070680.
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res. 2019;377(3):445-458. https://doi.org/10.1007/s00441-019-03093-9.
McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol. 2017;66:36-42. https://doi.org/10.1016/j.semcdb.2017.02.004.
Marciano DK. A holey pursuit: lumen formation in the developing kidney. Pediatr Nephrol. 2017;32(1):7-20. https://doi.org/10.1007/s00467-016-3326-4.
Ivanovitch K, Esteban I, Torres M. Growth and morphogenesis during early heart development in amniotes. J Cardiovasc Dev Dis. 2017;4(4):20. https://doi.org/10.3390/jcdd4040020.
Walck-Shannon E, Hardin J. Cell intercalation from top to bottom. Nat Rev Mol Cell Biol. 2014;15(1):34-48. https://doi.org/10.1038/nrm3723.
Keller R, Davidson L, Edlund A, et al. Mechanisms of convergence and extension by cell intercalation. Philos Trans Royal Soc London Ser B, Biol Sci. 2000;355(1399):897-922. https://doi.org/10.1098/rstb.2000.0626.
Neumann NM, Perrone MC, Veldhuis JH, et al. Coordination of receptor tyrosine kinase signaling and interfacial tension dynamics drives radial intercalation and tube elongation. Dev Cell. 2018;45(1):67-82. https://doi.org/10.1016/j.devcel.2018.03.011.
Lienkamp SS, Liu K, Karner CM, et al. Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet. 2012;44(12):1382-1387. https://doi.org/10.1038/ng.2452.
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68-75.
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781-810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126.
Matsumoto S, Fujii S, Kikuchi A. Arl4c is a key regulator of tubulogenesis and tumourigenesis as a target gene of Wnt-beta-catenin and growth factor-Ras signalling. J Biochem. 2017;161(1):27-35. https://doi.org/10.1093/jb/mvw069.
Wang WY, Hsu CC, Wang TY, et al. A gene expression signature of epithelial tubulogenesis and a role for ASPM in pancreatic tumor progression. Gastroenterology. 2013;145(5):1110-1120. https://doi.org/10.1053/j.gastro.2013.07.040.
Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development. 2017;144(4):552-566. https://doi.org/10.1242/dev.145904.
Committee on Practice Bulletins-Obstetrics. Practice bulletin no. 187: neural tube defects. Obstet Gynecol. 2017;130(6):e279-e290. https://doi.org/10.1097/AOG.0000000000002412.
Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol. 2010;88(8):653-669. https://doi.org/10.1002/bdra.20676.
Iliescu A, Gravel M, Horth C, Gros P. Independent mutations at Arg181 and Arg274 of Vangl proteins that are associated with neural tube defects in humans decrease protein stability and impair membrane targeting. Biochem. 2014;53(32):5356-5364. https://doi.org/10.1021/bi500400g.
Davey CF, Moens CB. Planar cell polarity in moving cells: think globally, act locally. Development. 2017;144(2):187-200. https://doi.org/10.1242/dev.122804.
Huebner RJ, Wallingford JB. Coming to consensus: a unifying model emerges for convergent extension. Dev Cell. 2018;46(4):389-396. https://doi.org/10.1016/j.devcel.2018.08.003.
Sokol SY. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin Cell Dev Biol. 2015;42:78-85. https://doi.org/10.1016/j.semcdb.2015.05.002.
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol. 2017;18(6):375-388. https://doi.org/10.1038/nrm.2017.11.
Habas R, Kato Y, He X. Wnt/frizzled activation of rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell. 2001;107(7):843-854.
Usui T, Shima Y, Shimada Y, et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of frizzled. Cell. 1999;98(5):585-595. https://doi.org/10.1016/s0092-8674(00)80046-x.
Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Human Mol Gen. 2001;10(22):2593-2601.
Takeuchi M, Nakabayashi J, Sakaguchi T, et al. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol. 2003;13(8):674-679. https://doi.org/10.1016/s0960-9822(03)00245-8.
Sato A, Khadka DK, Liu W, et al. Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development. 2006;133(21):4219-4231. https://doi.org/10.1242/dev.02590.
De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. Birth Defects Res A Clin Mol Teratol. 2014;100(8):633-641. https://doi.org/10.1002/bdra.23255.
Cai C, Shi O. Genetic evidence in planar cell polarity signaling pathway in human neural tube defects. Front Med. 2014;8(1):68-78. https://doi.org/10.1007/s11684-014-0308-4.
De Marco P, Merello E, Consales A, et al. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci. 2013;49(3):582-588. https://doi.org/10.1007/s12031-012-9871-9.
De Marco P, Merello E, Rossi A, et al. FZD6 is a novel gene for human neural tube defects. Hum Mutat. 2012;33(2):384-390. https://doi.org/10.1002/humu.21643.
Runnels LW. TRPM6 and TRPM7: a Mul-TRP-PLIK-cation of channel functions. Curr Pharm Biotechnol. 2011;12(1):42-53. https://doi.org/10.2174/138920111793937880.
Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol. 2003;121(1):49-60. https://doi.org/10.1085/jgp.20028740.
Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science. 2008;322(5902):756-760. https://doi.org/10.1126/science.1163493.
Sah R, Mesirca P, Mason X, et al. Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation. 2013;128(2):101-114. https://doi.org/10.1161/CIRCULATIONAHA.112.000768.
Jin J, Wu LJ, Jun J, et al. The channel kinase, TRPM7, is required for early embryonic development. Proc Nat Acad Sci USA. 2012;109(5):E225-E233. https://doi.org/10.1073/pnas.1120033109.
Yee NS, Zhou W, Liang IC. Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+−sensitive Socs3a signaling in development and cancer. Dis Model Mech. 2011;4(2):240-254. https://doi.org/10.1242/dmm.004564.
McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu MY, Cornell RA. Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol. 2007;127(8):2020-2030. https://doi.org/10.1038/sj.jid.5700710.
Liu W, Su LT, Khadka DK, et al. TRPM7 regulates gastrulation during vertebrate embryogenesis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Dev Biol. 2011;350(2):348-357. https://doi.org/10.1016/j.ydbio.2010.11.034.
Miller JC, Landesman R. Magnesium deficiency in embryos of Xenopus laevis. J Embryol Exp Morphol. 1977;39:97-113.
Komiya Y, Runnels LW. TRPM channels and magnesium in early embryonic development. Int J Dev Biol. 2015;59(7-9):281-288. https://doi.org/10.1387/ijdb.150196lr.
Kane DA, McFarland KN, Warga RM. Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development. 2005;132(5):1105-1116. https://doi.org/10.1242/dev.01668.
McFarland KN, Warga RM, Kane DA. Genetic locus half baked is necessary for morphogenesis of the ectoderm. Dev Dyn. 2005;233(2):390-406. https://doi.org/10.1002/dvdy.20325.
Song S, Eckerle S, Onichtchouk D, Marrs JA, Nitschke R, Driever W. Pou5f1-dependent EGF expression controls E-cadherin endocytosis, cell adhesion, and zebrafish epiboly movements. Dev Cell. 2013;24(5):486-501. https://doi.org/10.1016/j.devcel.2013.01.016.
Bharathan NK, Dickinson AJG. Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo. Dev Biol. 2019;450(2):115-131. https://doi.org/10.1016/j.ydbio.2019.03.010.
Marsden M, DeSimone DW. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development. 2001;128(18):3635-3647.
Farahat M, Kazi GAS, Taketa H, et al. Fibronectin-induced ductal formation in salivary gland self-organization model. Dev Dyn. 2019;248(9):813-825. https://doi.org/10.1002/dvdy.78.
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol. 2015;408(2):316-327. https://doi.org/10.1016/j.ydbio.2015.06.013.
Prager A, Hagenlocher C, Ott T, Schambony A, Feistel K. Hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus. Dev Biol. 2017;430(1):188-201. https://doi.org/10.1016/j.ydbio.2017.07.020.
Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development. 1993;119(4):1093-1105.
George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993;119(4):1079-1091.
Panousopoulou E, Hobbs C, Mason I, Green JB, Formstone CJ. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129(9):1915-1927. https://doi.org/10.1242/jcs.180703.
Walder RY, Yang B, Stokes JB, et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Human Mol Gen. 2009;18(22):4367-4375. https://doi.org/10.1093/hmg/ddp392.
Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol. 2006;127(5):525-537. https://doi.org/10.1085/jgp.200609502.
Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002;31(2):171-174. https://doi.org/10.1038/ng901.
Chubanov V, Waldegger S, Mederos y Schnitzler M, et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Nat Acad Sci USA. 2004;101(9):2894-2899. https://doi.org/10.1073/pnas.0305252101.
Komiya Y, Bai Z, Cai N, et al. A nonredundant role for the TRPM6 channel in neural tube closure. Sci Rep. 2017;7(1):15623. https://doi.org/10.1038/s41598-017-15855-y.
Sarac M, Onalan E, Bakal U, et al. Magnesium-permeable TRPM6 polymorphisms in patients with meningomyelocele. Springerplus. 2016;5(1):1703. https://doi.org/10.1186/s40064-016-3395-7.
Groenen PM, van Rooij IA, Peer PG, Ocke MC, Zielhuis GA, Steegers-Theunissen RP. Low maternal dietary intakes of iron, magnesium, and niacin are associated with spina bifida in the offspring. J Nutr. 2004;134(6):1516-1522. https://doi.org/10.1093/jn/134.6.1516.
Chubanov V, Ferioli S, Wisnowsky A, et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife. 2016;5:e20914. https://doi.org/10.7554/eLife.20914.
de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1-46. https://doi.org/10.1152/physrev.00012.2014.
Grubbs RD, Maguire ME. Magnesium as a regulatory cation: criteria and evaluation. Magnesium. 1987;6(3):113-127.
Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys. 2011;512(1):1-23. https://doi.org/10.1016/j.abb.2011.05.010.
Li FY, Chaigne-Delalande B, Kanellopoulou C, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency [Research Support, N.I.H., Intramural]. Nature. 2011;475(7357):471-476. https://doi.org/10.1038/nature10246.
Su LT, Liu W, Chen HC, Gonzalez-Pagan O, Habas R, Runnels LW. TRPM7 regulates polarized cell movements [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Biochem J. 2011;434(3):513-521. https://doi.org/10.1042/BJ20101678.
Aarts M, Iihara K, Wei WL, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115(7):863-877.
Desai BN, Krapivinsky G, Navarro B, et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell. 2012;22(6):1149-1162. https://doi.org/10.1016/j.devcel.2012.04.006.
Sun HS, Jackson MF, Martin LJ, et al. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci. 2009;12(10):1300-1307. https://doi.org/10.1038/nn.2395.
Chen HC, Su LT, Gonzalez-Pagan O, Overton JD, Runnels LW. A key role for Mg2+ in TRPM7's control of ROS levels during cell stress. Biochem J. 2012;445(3):441-448. https://doi.org/10.1042/BJ20120248.
Chen HC, Xie J, Zheng Z, Su LT, Yue L, Runnels LW. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase. PLoS One. 2010;5(6):e11161.
Covarrubias L, Hernandez-Garcia D, Schnabel D, Salas-Vidal E, Castro-Obregon S. Function of reactive oxygen species during animal development: passive or active? Dev Biol. 2008;320(1):1-11. https://doi.org/10.1016/j.ydbio.2008.04.041.
Ben Mahdi MH, Andrieu V, Pasquier C. Focal adhesion kinase regulation by oxidative stress in different cell types. IUBMB Life. 2000;50(4-5):291-299. https://doi.org/10.1080/713803721.
Su LT, Agapito MA, Li M, et al. TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem. 2006;281(16):11260-11270. https://doi.org/10.1074/jbc.M512885200.
Su LT, Chen HC, Gonzalez-Pagan O, et al. TRPM7 activates m-calpain by stress-dependent stimulation of p38 MAPK and c-JunN-terminal kinase. J Mol Biol. 2010;396(4):858-869. https://doi.org/10.1016/j.jmb.2010.01.014.
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the Actin cytoskeleton and its role in the vascular system. Free Radic Biol Med. 2017;109:84-107. https://doi.org/10.1016/j.freeradbiomed.2017.03.004.
Stritt S, Nurden P, Favier R, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular mg(2+) homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097. https://doi.org/10.1038/ncomms11097.
Zhu D, You J, Zhao N, Xu H. Magnesium regulates endothelial barrier functions through TRPM7, MagT1, and S1P1. Adv Sci (Weinh). 2019;6(18):1901166. https://doi.org/10.1002/advs.201901166.
Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. Calcium flickers steer cell migration. Nature. 2009;457(7231):901-905. https://doi.org/10.1038/nature07577.
Visser D, Langeslag M, Kedziora KM, et al. TRPM7 triggers ca(2+) sparks and invadosome formation in neuroblastoma cells. Cell Calcium. 2013;54(6):404-415. https://doi.org/10.1016/j.ceca.2013.09.003.
Beesetty P, Wieczerzak KB, Gibson JN, et al. Inactivation of TRPM7 kinase in mice results in enlarged spleens, reduced T-cell proliferation and diminished store-operated calcium entry. Sci Rep. 2018;8(1):3023. https://doi.org/10.1038/s41598-018-21004-w.
Faouzi M, Kilch T, Horgen FD, Fleig A, Penner R. The TRPM7 channel kinase regulates store-operated calcium entry. J Physiol. 2017;595(10):3165-3180. https://doi.org/10.1113/JP274006.
Gotru SK, Chen W, Kraft P, et al. TRPM7 kinase controls calcium responses in arterial thrombosis and stroke in mice. Arterioscler Thromb Vasc Biol. 2018;38(2):344-352. https://doi.org/10.1161/ATVBAHA.117.310391.
Volpe P, Vezu L. Intracellular magnesium and inositol 1,4,5-trisphosphate receptor: molecular mechanisms of interaction, physiology and pharmacology. Magnes Res. 1993;6(3):267-274.
Williams M, Yen W, Lu X, Sutherland A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev Cell. 2014;29(1):34-46. https://doi.org/10.1016/j.devcel.2014.02.007.
Nishimura T, Honda H, Takeichi M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell. 2012;149(5):1084-1097. https://doi.org/10.1016/j.cell.2012.04.021.
Ybot-Gonzalez P, Savery D, Gerrelli D, et al. Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development. 2007;134(4):789-799. https://doi.org/10.1242/dev.000380.
De Arcangelis A, Mark M, Kreidberg J, Sorokin L, Georges-Labouesse E. Synergistic activities of alpha3 and alpha6 integrins are required during apical ectodermal ridge formation and organogenesis in the mouse. Development. 1999;126(17):3957-3968.
Delile J, Herrmann M, Peyrieras N, Doursat R. A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nat Commun. 2017;8:13929. https://doi.org/10.1038/ncomms13929.
Brodland GW. How computational models can help unlock biological systems. Semin Cell Dev Biol. 2015;47-48:62-73. https://doi.org/10.1016/j.semcdb.2015.07.001.
معلومات مُعتمدة: R01 GM080753 United States GM NIGMS NIH HHS; R03 HD096365 United States HD NICHD NIH HHS
فهرسة مساهمة: Keywords: TRPM6; TRPM7; Xenopus; cell intercalation; magnesium; neural tube closure
المشرفين على المادة: 0 (Ions)
0 (TRPM Cation Channels)
0 (TRPM6 protein, human)
0 (TRPM7 protein, Xenopus)
0 (Trpm6 protein, mouse)
0 (Xenopus Proteins)
EC 2.7.1.- (Trpm7 protein, mouse)
EC 2.7.11.1 (Protein Serine-Threonine Kinases)
EC 2.7.11.1 (TRPM7 protein, human)
I38ZP9992A (Magnesium)
تواريخ الأحداث: Date Created: 20200422 Date Completed: 20210830 Latest Revision: 20230621
رمز التحديث: 20240829
DOI: 10.1002/dvdy.182
PMID: 32315468
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0177
DOI:10.1002/dvdy.182