دورية أكاديمية

Tidal Volume Lowering by Instrumental Dead Space Reduction in Brain-Injured ARDS Patients: Effects on Respiratory Mechanics, Gas Exchange, and Cerebral Hemodynamics.

التفاصيل البيبلوغرافية
العنوان: Tidal Volume Lowering by Instrumental Dead Space Reduction in Brain-Injured ARDS Patients: Effects on Respiratory Mechanics, Gas Exchange, and Cerebral Hemodynamics.
المؤلفون: Pitoni S; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., D'Arrigo S; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Grieco DL; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Idone FA; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Santantonio MT; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Di Giannatale P; Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy., Ferrieri A; Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy., Natalini D; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Eleuteri D; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Jonson B; Clinical Physiology, Skane University Hospital, 221 85, Lund, Sweden., Antonelli M; Department of Anesthesiology and Intensive Care, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy., Maggiore SM; Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy. salvatore.maggiore@unich.it.
المصدر: Neurocritical care [Neurocrit Care] 2021 Feb; Vol. 34 (1), pp. 21-30.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 101156086 Publication Model: Print Cited Medium: Internet ISSN: 1556-0961 (Electronic) Linking ISSN: 15416933 NLM ISO Abbreviation: Neurocrit Care Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Totowa, NJ : Humana Press, c2004-
مواضيع طبية MeSH: Respiratory Distress Syndrome*/therapy, Brain ; Hemodynamics ; Humans ; Respiration, Artificial ; Respiratory Mechanics ; Tidal Volume
مستخلص: Background: Limiting tidal volume (V T ), plateau pressure, and driving pressure is essential during the acute respiratory distress syndrome (ARDS), but may be challenging when brain injury coexists due to the risk of hypercapnia. Because lowering dead space enhances CO 2 clearance, we conducted a study to determine whether and to what extent replacing heat and moisture exchangers (HME) with heated humidifiers (HH) facilitate safe V T lowering in brain-injured patients with ARDS.
Methods: Brain-injured patients (head trauma or spontaneous cerebral hemorrhage with Glasgow Coma Scale at admission < 9) with mild and moderate ARDS received three ventilatory strategies in a sequential order during continuous paralysis: (1) HME with V T to obtain a PaCO 2 within 30-35 mmHg (HME1); (2) HH with V T titrated to obtain the same PaCO 2 (HH); and (3) HME1 settings resumed (HME2). Arterial blood gases, static and quasi-static respiratory mechanics, alveolar recruitment by multiple pressure-volume curves, intracranial pressure, cerebral perfusion pressure, mean arterial pressure, and mean flow velocity in the middle cerebral artery by transcranial Doppler were recorded. Dead space was measured and partitioned by volumetric capnography.
Results: Eighteen brain-injured patients were studied: 7 (39%) had mild and 11 (61%) had moderate ARDS. At inclusion, median [interquartile range] PaO 2 /FiO 2 was 173 [146-213] and median PEEP was 8 cmH 2 O [5-9]. HH allowed to reduce V T by 120 ml [95% CI: 98-144], V T /kg predicted body weight by 1.8 ml/kg [95% CI: 1.5-2.1], plateau pressure and driving pressure by 3.7 cmH 2 O [2.9-4.3], without affecting PaCO 2 , alveolar recruitment, and oxygenation. This was permitted by lower airway (- 84 ml [95% CI: - 79 to - 89]) and total dead space (- 86 ml [95% CI: - 73 to - 98]). Sixteen patients (89%) showed driving pressure equal or lower than 14 cmH 2 O while on HH, as compared to 7 (39%) and 8 (44%) during HME1 and HME2 (p < 0.001). No changes in mean arterial pressure, cerebral perfusion pressure, intracranial pressure, and middle cerebral artery mean flow velocity were documented during HH.
Conclusion: The dead space reduction provided by HH allows to safely reduce V T without modifying PaCO 2 nor cerebral perfusion. This permits to provide a wider proportion of brain-injured ARDS patients with less injurious ventilation.
References: Kahn JM, Caldwell EC, Deem S, Newell DW, Heckbert SR, Rubenfeld GD. Acute lung injury in patients with subarachnoid hemorrhage: incidence, risk factors, and outcome. Crit Care Med. 2006;34:196–202. (PMID: 1637417410.1097/01.CCM.0000194540.44020.8E)
Mascia L, Sakr Y, Pasero D, Payen D, Reinhart K, Vincent J-L, et al. Extracranial complications in patients with acute brain injury: a post hoc analysis of the SOAP study. Intensive Care Med. 2008;34:720–7. (PMID: 1817510710.1007/s00134-007-0974-7)
Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ. Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med. 2005;33:654–60. (PMID: 1575376010.1097/01.CCM.0000155911.01844.54)
Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34:617–23 (quiz 624). (PMID: 1652125810.1097/01.CCM.0000201903.46435.35)
Rincon F, Ghosh S, Dey S, Maltenfort M, Vibbert M, Urtecho J, et al. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery. 2012;71:795–803. (PMID: 2285502810.1227/NEU.0b013e3182672ae5)
Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55:106–11. (PMID: 1285588810.1097/01.TA.0000071620.27375.BE)
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8. (PMID: 10.1056/NEJM200005043421801)
Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–80. (PMID: 2694762410.1016/S2213-2600(16)00057-6)
Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official american thoracic society/european society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63. (PMID: 2845933610.1164/rccm.201703-0548ST)
Nin N, Muriel A, Peñuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43:200–8. (PMID: 28108768563022510.1007/s00134-016-4611-1)
Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:964–84. (PMID: 2840672410.1164/rccm.201610-2156SO28406724)
Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care. 2009;11:417–26. (PMID: 1954812010.1007/s12028-009-9242-819548120)
Pelosi P, Ferguson ND, Frutos-Vivar F, Anzueto A, Putensen C, Raymondos K, et al. Management and outcome of mechanically ventilated neurologic patients. Crit Care Med. 2011;39:1482–92. (PMID: 2137855410.1097/CCM.0b013e31821209a821378554)
Mascia L, Zavala E, Bosma K, Pasero D, Decaroli D, Andrews P, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35:1815–20. (PMID: 1756833110.1097/01.CCM.0000275269.77467.DF17568331)
Asehnoune K, Mrozek S, Perrigault PF, Seguin P, Dahyot-Fizelier C, Lasocki S, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43:957–70. (PMID: 2831594010.1007/s00134-017-4764-628315940)
Marhong JD, Ferguson ND, Singh JM. Ventilation practices in subarachnoid hemorrhage: a cohort study exploring the use of lung protective ventilation. Neurocrit Care. 2014;21:178–85. (PMID: 2502280510.1007/s12028-014-0014-825022805)
Prin S, Chergui K, Augarde R, Page B, Jardin F, Vieillard-Baron A. Ability and safety of a heated humidifier to control hypercapnic acidosis in severe ARDS. Intensive Care Med. 2002;28:1756–60. (PMID: 1244751910.1007/s00134-002-1520-212447519)
Prat G, Renault A, Tonnelier J-M, Goetghebeur D, Oger E, Boles J-M, et al. Influence of the humidification device during acute respiratory distress syndrome. Intensive Care Med. 2003;29:2211–5. (PMID: 1290485810.1007/s00134-003-1926-512904858)
Richecoeur J, Lu Q, Vieira SR, Puybasset L, Kalfon P, Coriat P, et al. Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160:77–85. (PMID: 1039038310.1164/ajrccm.160.1.980900610390383)
Morán I, Bellapart J, Vari A, Mancebo J. Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med. 2006;32:524–31. (PMID: 1649853110.1007/s00134-006-0073-116498531)
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.
Papazian L, Forel J-M, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16. (PMID: 2084324510.1056/NEJMoa100537220843245)
Tusman G, Sipmann FS, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4. (PMID: 2135960910.1007/s00134-011-2164-x21359609)
Kreit WJ. Volume capnography in the intensive care unit: physiological principles, measurements, and calculations. Ann Am Thorac Soc. 2019;16:291–300. (PMID: 3065770010.1513/AnnalsATS.201807-502CME30657700)
Servillo G, Svantesson C, Beydon L, Roupie E, Brochard L, Lemaire F, et al. Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion. Am J Respir Crit Care Med. 1997;155:1629–36. (PMID: 915486810.1164/ajrccm.155.5.91548689154868)
Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med. 1999;159:1172–8. (PMID: 1019416210.1164/ajrccm.159.4.980108810194162)
Svantesson C, Drefeldt B, Sigurdsson S, Larsson A, Brochard L, Jonson B. A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system. J Clin Monit Comput. 1999;15:9–16. (PMID: 1257805610.1023/A:100991690507812578056)
Ranieri VM, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J. Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “occlusion” versus “constant flow” technique. Am J Respir Crit Care Med. 1994;149:19–27. (PMID: 811158110.1164/ajrccm.149.1.81115818111581)
Scaramuzzo G, Spadaro S, Waldmann AD, Böhm SH, Ragazzi R, Marangoni E, et al. Heterogeneity of regional inflection points from pressure-volume curves assessed by electrical impedance tomography. Crit Care. 2019;23:119. (PMID: 30992054646922310.1186/s13054-019-2417-6)
Maggiore SM, Richard JC, Brochard L. What has been learnt from P/V curves in patients with acute lung injury/acute respiratory distress syndrome. Eur Respir J Suppl. 2003;42:22s–6s. (PMID: 1294599710.1183/09031936.03.00004204)
Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L. Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med. 2001;164:795–801. (PMID: 1154953510.1164/ajrccm.164.5.2006071)
Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, et al. PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med. 2011;37:1595–604. (PMID: 2186636910.1007/s00134-011-2333-y)
Campbell RS, Davis K, Johannigman JA, Branson RD. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients. Respir Care. 2000;45:306–12. (PMID: 10771799)
Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DDM, Damiani LP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low peep on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318:1335–45. (PMID: 10.1001/jama.2017.14171)
Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73. (PMID: 2019753310.1001/jama.2010.218)
Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68. (PMID: 10.1056/NEJMoa1214103)
National Heart, Lung and and Blood Institute PETAL Clinical Trials Network, Moss M, Huang DT, Brower RG, Ferguson ND, Ginde AA, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380:1997–2008. (PMID: 10.1056/NEJMoa1901686)
Roth C, Ferbert A, Deinsberger W, Kleffmann J, Kästner S, Godau J, et al. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care. 2014;21:186–91. (PMID: 2498550010.1007/s12028-014-0004-x)
Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6. (PMID: 1576135310.1097/01.TA.0000152806.19198.DB)
Tejerina E, Pelosi P, Muriel A, Peñuelas O, Sutherasan Y, Frutos-Vivar F, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341–5. (PMID: 2791490810.1016/j.jcrc.2016.11.01027914908)
Vargas M, Sutherasan Y, Antonelli M, Brunetti I, Corcione A, Laffey JG, et al. Tracheostomy procedures in the intensive care unit: an international survey. Crit Care. 2015;19:291. (PMID: 26271742453680310.1186/s13054-015-1013-7)
Abe T, Madotto F, Pham T, Nagata I, Uchida M, Tamiya N, et al. Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries. Crit Care. 2018;22:195. (PMID: 30115127609724510.1186/s13054-018-2126-6)
Grieco DL, Russo A, Romanò B, Anzellotti GM, Ciocchetti P, Torrini F, et al. Lung volumes, respiratory mechanics and dynamic strain during general anaesthesia. Br J Anaesth. 2018;121:1156–65. (PMID: 3033686110.1016/j.bja.2018.03.02230336861)
Grieco DL, Chen L, Dres M, Brochard L. Should we use driving pressure to set tidal volume? Curr Opin Crit Care. 2017;23:38–44. (PMID: 2787541010.1097/MCC.000000000000037727875410)
Amato MBP, Meade MO, Slutsky AS, Brochard L, EL Costa V, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55. (PMID: 2569301410.1056/NEJMsa141063925693014)
Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. (PMID: 2690333710.1001/jama.2016.029126903337)
Laffey JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016;42:1865–76. (PMID: 2775751610.1007/s00134-016-4571-527757516)
Vargas M, Chiumello D, Sutherasan Y, Ball L, Esquinas AM, Pelosi P, et al. Heat and moisture exchangers (HMEs) and heated humidifiers (HHs) in adult critically ill patients: a systematic review, meta-analysis and meta-regression of randomized controlled trials. Crit Care. 2017;21:123. (PMID: 28552074544730710.1186/s13054-017-1710-5)
Henderson WR, Chen L, Amato MBP, Brochard LJ. Fifty years of research in ARDS. Respiratory mechanics in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:822–33. (PMID: 2830632710.1164/rccm.201612-2495CI)
Xie J, Jin F, Pan C, Liu S, Liu L, Xu J, et al. The effects of low tidal ventilation on lung strain correlate with respiratory system compliance. Crit Care. 2017;21:23. (PMID: 28159013529198110.1186/s13054-017-1600-x)
Richard J-C, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, et al. Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med. 2003;31:89–92. (PMID: 1254499910.1097/00003246-200301000-0001412544999)
Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001;163:1609–13. (PMID: 1140188210.1164/ajrccm.163.7.200421511401882)
Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, et al. Potential for lung recruitment estimated by the recruitment-to-inflation ratio in acute respiratory distress syndrome. A Clinical Trial. Am J Respir Crit Care Med. 2020;201:178–87. (PMID: 3157715310.1164/rccm.201902-0334OC31577153)
Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–86. (PMID: 1664139410.1056/NEJMoa05205216641394)
Chiumello D, Marino A, Brioni M, Cigada I, Menga F, Colombo A, et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship? Am J Respir Crit Care Med. 2016;193:1254–63. (PMID: 2669967210.1164/rccm.201507-1413OC26699672)
Cressoni M, Chiumello D, Algieri I, Brioni M, Chiurazzi C, Colombo A, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017;43:603–11. (PMID: 2828369910.1007/s00134-017-4754-828283699)
فهرسة مساهمة: Keywords: ARDS; Brain injury; Dead space; Mechanical ventilation; Protective ventilation; Ventilator-induced lung injury
تواريخ الأحداث: Date Created: 20200424 Date Completed: 20210929 Latest Revision: 20210929
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7224122
DOI: 10.1007/s12028-020-00969-5
PMID: 32323146
قاعدة البيانات: MEDLINE
الوصف
تدمد:1556-0961
DOI:10.1007/s12028-020-00969-5