دورية أكاديمية

Calbindin expression in adult vestibular epithelia.

التفاصيل البيبلوغرافية
العنوان: Calbindin expression in adult vestibular epithelia.
المؤلفون: Prins TJ; Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA.; Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA., Myers ZA; Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA., Saldate JJ; Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA., Hoffman LF; Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Box 951624, Los Angeles, CA, 90095-1624, USA. lfh@g.ucla.edu.; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. lfh@g.ucla.edu.
المصدر: Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology [J Comp Physiol A Neuroethol Sens Neural Behav Physiol] 2020 Jul; Vol. 206 (4), pp. 623-637. Date of Electronic Publication: 2020 Apr 29.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101141792 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1351 (Electronic) Linking ISSN: 03407594 NLM ISO Abbreviation: J Comp Physiol A Neuroethol Sens Neural Behav Physiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, c2001-
مواضيع طبية MeSH: Calbindin 1/*biosynthesis , Calbindin 2/*biosynthesis , Calcium-Binding Proteins/*metabolism , Hair Cells, Auditory/*metabolism , Neuroepithelial Cells/*metabolism , Vestibule, Labyrinth/*metabolism, Animals ; Calbindin 1/metabolism ; Calbindin 2/metabolism ; Cell Polarity/physiology ; Hair Cells, Auditory/cytology ; Mice, Inbred C57BL ; Neuroepithelial Cells/cytology ; Vestibule, Labyrinth/cytology
مستخلص: The mammalian vestibular epithelia exhibit a remarkably stereotyped organization featuring cellular characteristics under planar cell polarity (PCP) control. PCP mechanisms are responsible for the organization of hair cell morphologic polarization vectors, and are thought to be responsible for the postsynaptic expression of the calcium-binding protein calretinin that defines the utricular striola and cristae central zone. However, recent analyses revealed that subtle differences in the topographic expression of oncomodulin, another calcium-binding protein, reflects heterogeneous factors driving the subtle variations in expression. Calbindin represents a third calcium-binding protein that has been previously described to be expressed in both hair cells and afferent calyces in proximity to the utricular striola and crista central zone. The objective of the present investigation was to determine calbindin's topographic pattern of expression to further elucidate the extent to which PCP mechanisms might exert control over the organization of vestibular neuroepithelia. The findings revealed that calbindin exhibited an expression pattern strikingly similar to oncomodulin. However, within calyces of the central zone calbindin was colocalized with calretinin. These results indicate that organizational features of vestibular epithelia are governed by a suite of factors that include PCP mechanisms as well others yet to be defined.
References: Baird RA, Desmadryl G, Fernandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203. (PMID: 10.1152/jn.1988.60.1.182)
Bravo-Sagua R, Parra V, Lopez-Crisosto C, Diaz P, Quest AF, Lavandero S (2017) Calcium transport and signaling in mitochondria. Compr Physiol 7:623–634. https://doi.org/10.1002/cphy.c160013. (PMID: 10.1002/cphy.c16001328333383)
Burns JC, On D, Baker W, Collado MS, Corwin JT (2012) Over half the hair cells in the mouse utricle first appear after birth, with significant numbers originating from early postnatal mitotic production in peripheral and striolar growth zones. J Assoc Res Otolaryngol 13:609–627. https://doi.org/10.1007/s10162-012-0337-0. (PMID: 10.1007/s10162-012-0337-0227524533441952)
Climer LK, Cox AM, Reynolds TJ, Simmons DD (2019) Oncomodulin: the enigmatic parvalbumin protein. Front Mol Neurosci 12:235. https://doi.org/10.3389/fnmol.2019.00235. (PMID: 10.3389/fnmol.2019.00235316495056794386)
Collado MS, Thiede BR, Baker W, Askew C, Igbani LM, Corwin JT (2011) The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. J Neurosci 31:11855–11866. https://doi.org/10.1523/JNEUROSCI.2525-11.2011. (PMID: 10.1523/JNEUROSCI.2525-11.2011218495463164812)
Contini D, Holstein GR, Art JJ (2020) Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle. J Physiol 598:853–889. https://doi.org/10.1113/JP278680. (PMID: 10.1113/JP27868031623011)
Curthoys IS, Burgess AM, Goonetilleke SC (2019) Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (%3e250Hz) sound and vibration. Hear Res 373:59–70. https://doi.org/10.1016/j.heares.2018.12.009. (PMID: 10.1016/j.heares.2018.12.00930599427)
Deans MR (2013) A balance of form and function: planar polarity and development of the vestibular maculae. Semin Cell Dev Biol 24:490–498. https://doi.org/10.1016/j.semcdb.2013.03.001. (PMID: 10.1016/j.semcdb.2013.03.001235075213690145)
Dechesne CJ, Rabejac D, Desmadryl G (1994) Development of calretinin immunoreactivity in the mouse inner ear. J Comp Neurol 346:517–529. https://doi.org/10.1002/cne.903460405. (PMID: 10.1002/cne.9034604057983242)
Dechesne CJ, Thomasset M (1988) Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear. Brain Res 468:233–242. (PMID: 10.1016/0165-3806(88)90135-6)
Dechesne CJ, Thomasset M, Brehier A, Sans A (1988) Calbindin (CaBP 28 kDa) localization in the peripheral vestibular system of various vertebrates. Hear Res 33:273–278. (PMID: 10.1016/0378-5955(88)90157-8)
Desai SS, Ali H, Lysakowski A (2005a) Comparative morphology of rodent vestibular periphery II Cristae ampullares. J Neurophysiol 93:267–280. https://doi.org/10.1152/jn.00747.200300747.2003. (PMID: 10.1152/jn.00747.200300747.200315240768)
Desai SS, Zeh C, Lysakowski A (2005b) Comparative morphology of rodent vestibular periphery. I Saccular and utricular maculae. J Neurophysiol 93:251–266. https://doi.org/10.1152/jn.00746.200300746.2003. (PMID: 10.1152/jn.00746.200300746.200315240767)
Desmadryl G, Dechesne CJ (1992) Calretinin immunoreactivity in chinchilla and guinea pig vestibular end organs characterizes the calyx unit subpopulation. Exp Brain Res 89:105–108. (PMID: 10.1007/BF00229006)
Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990a) The vestibular nerve of the chinchilla. IV Discharge properties of utricular afferents. J Neurophysiol 63:781–790. (PMID: 10.1152/jn.1990.63.4.781)
Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990b) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804. (PMID: 10.1152/jn.1990.63.4.791)
Highstein SM, Holstein GR, Mann MA, Rabbitt RD (2014) Evidence that protons act as neurotransmitters at vestibular hair cell-calyx afferent synapses. Proc Natl Acad Sci U S A 111:5421–5426. https://doi.org/10.1073/pnas.1319561111. (PMID: 10.1073/pnas.1319561111247068623986198)
Hoffman LF, Choy KR, Sultemeier DR, Simmons DD (2018) Oncomodulin expression reveals new insights into the cellular organization of the murine utricle striola. J Assoc Res Otolaryngol 19:33–51. https://doi.org/10.1007/s10162-017-0652-6. (PMID: 10.1007/s10162-017-0652-6293184095783930)
Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786. https://doi.org/10.1152/jn.01002.2004. (PMID: 10.1152/jn.01002.200415601735)
Jiang T, Kindt K, Wu DK (2017) Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. Elife. https://doi.org/10.7554/eLife.23661. (PMID: 10.7554/eLife.23661292061035762159)
Leonard RB, Kevetter GA (2002) Molecular probes of the vestibular nerve. I Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 928:8–17. https://doi.org/10.1016/s0006-8993(01)03268-1. (PMID: 10.1016/s0006-8993(01)03268-111844467)
Li A, Xue J, Peterson EH (2008) Architecture of the mouse utricle: macular organization and hair bundle heights. J Neurophysiol 99:718–733. https://doi.org/10.1152/jn.00831.2007. (PMID: 10.1152/jn.00831.200718046005)
Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389:419–443. (PMID: 10.1002/(SICI)1096-9861(19971222)389:3<419::AID-CNE5>3.0.CO;2-3)
Maskey D, Pradhan J, Kim HJ, Park KS, Ahn SC, Kim MJ (2010) Immunohistochemical localization of calbindin D28-k, parvalbumin, and calretinin in the cerebellar cortex of the circling mouse. Neurosci Lett 483:132–136. https://doi.org/10.1016/j.neulet.2010.07.077. (PMID: 10.1016/j.neulet.2010.07.07720691752)
Ono K et al (2020) Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nat Commun 11:63. https://doi.org/10.1038/s41467-019-13710-4. (PMID: 10.1038/s41467-019-13710-4318967436940366)
Pangrsic T, Gabrielaitis M, Michanski S, Schwaller B, Wolf F, Strenzke N, Moser T (2015) EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells. Proc Natl Acad Sci U S A 112:E1028–1037. https://doi.org/10.1073/pnas.1416424112. (PMID: 10.1073/pnas.1416424112256917544352837)
Paulin MG, Hoffman LF (2019) Models of vestibular semicircular canal afferent neuron firing activity. J Neurophysiol 122:2548–2567. https://doi.org/10.1152/jn.00087.2019. (PMID: 10.1152/jn.00087.201931693427)
Prins TJ, Saldate JJ, Berke GS, Hoffman LF (2019) On the legacy of genetically altered mouse models to explore vestibular function: distribution of vestibular hair cell phenotypes in the otoferlin-null mouse. Ann Otol Rhinol Laryngol 128:125S–133S. https://doi.org/10.1177/0003489419834596. (PMID: 10.1177/000348941983459631092028)
Rabbitt RD (2019) Semicircular canal biomechanics in health and disease. J Neurophysiol 121:732–755. https://doi.org/10.1152/jn.00708.2018. (PMID: 10.1152/jn.00708.201830565972)
R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.
Sadakata T et al (2007) Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 27:2472–2482. https://doi.org/10.1523/JNEUROSCI.2279-06.2007. (PMID: 10.1523/JNEUROSCI.2279-06.2007173443856672497)
Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J (2003) Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 551:13–32. https://doi.org/10.1113/jphysiol.2002.035824. (PMID: 10.1113/jphysiol.2002.035824128131592343131)
Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW (2017) Ca(2+)-permeable AMPARs mediate glutamatergic transmission and excitotoxic damage at the hair cell ribbon synapse. J Neurosci 37:6162–6175. https://doi.org/10.1523/JNEUROSCI.3644-16.2017. (PMID: 10.1523/JNEUROSCI.3644-16.2017285394245481947)
Simmons DD, Tong B, Schrader AD, Hornak AJ (2010) Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 518:3785–3802. https://doi.org/10.1002/cne.22424. (PMID: 10.1002/cne.22424206530342909616)
Songer JE, Eatock RA (2013) Tuning and timing in mammalian type I hair cells and calyceal synapses. J Neurosci 33:3706–3724. https://doi.org/10.1523/JNEUROSCI.4067-12.2013. (PMID: 10.1523/JNEUROSCI.4067-12.2013234266973857958)
فهرسة مساهمة: Keywords: Calretinin; Calyx; Crista; Oncomodulin; Utricle
المشرفين على المادة: 0 (Calb1 protein, mouse)
0 (Calb2 protein, mouse)
0 (Calbindin 1)
0 (Calbindin 2)
0 (Calcium-Binding Proteins)
0 (oncomodulin)
تواريخ الأحداث: Date Created: 20200501 Date Completed: 20210907 Latest Revision: 20211017
رمز التحديث: 20240628
DOI: 10.1007/s00359-020-01418-6
PMID: 32350587
قاعدة البيانات: MEDLINE