دورية أكاديمية

Neural In Vitro Models for Studying Substances Acting on the Central Nervous System.

التفاصيل البيبلوغرافية
العنوان: Neural In Vitro Models for Studying Substances Acting on the Central Nervous System.
المؤلفون: Fritsche E; IUF-Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Dusseldorf gGmbH, Dusseldorf, Germany. ellen.fritsche@iuf-duesseldorf.de., Tigges J; IUF-Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Dusseldorf gGmbH, Dusseldorf, Germany., Hartmann J; IUF-Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Dusseldorf gGmbH, Dusseldorf, Germany., Kapr J; IUF-Leibniz Research Institute for Environmental Medicine at the Heinrich-Heine-University Dusseldorf gGmbH, Dusseldorf, Germany., Serafini MM; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy., Viviani B; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy. barbara.viviani@unimi.it.
المصدر: Handbook of experimental pharmacology [Handb Exp Pharmacol] 2021; Vol. 265, pp. 111-141.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7902231 Publication Model: Print Cited Medium: Print ISSN: 0171-2004 (Print) Linking ISSN: 01712004 NLM ISO Abbreviation: Handb Exp Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Induced Pluripotent Stem Cells* , Neurotoxicity Syndromes*, Animals ; Cell Differentiation ; Central Nervous System ; Humans ; Neurons
مستخلص: Animal models have been greatly contributing to our understanding of physiology, mechanisms of diseases, and toxicity. Yet, their limitations due to, e.g., interspecies variation are reflected in the high number of drug attrition rates, especially in central nervous system (CNS) diseases. Therefore, human-based neural in vitro models for studying safety and efficacy of substances acting on the CNS are needed. Human iPSC-derived cells offer such a platform with the unique advantage of reproducing the "human context" in vitro by preserving the genetic and molecular phenotype of their donors. Guiding the differentiation of hiPSC into cells of the nervous system and combining them in a 2D or 3D format allows to obtain complex models suitable for investigating neurotoxicity or brain-related diseases with patient-derived cells. This chapter will give an overview over stem cell-based human 2D neuronal and mixed neuronal/astrocyte models, in vitro cultures of microglia, as well as CNS disease models and considers new developments in the field, more specifically the use of brain organoids and 3D bioprinted in vitro models for safety and efficacy evaluation.
References: Abernathy DG, Kim WK, McCoy MJ, Lake AM, Ouwenga R, Lee SW, Xing X, Li D, Lee HJ, Heuckeroth RO, Dougherty JD, Wang T, Yoo AS (2017) MicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblasts. Cell Stem Cell 21:332–348.e9. https://doi.org/10.1016/j.stem.2017.08.002. (PMID: 288863665679239)
Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:278–293.e9. https://doi.org/10.1016/j.neuron.2017.03.042. (PMID: 284269645482419)
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543.
Almeida S, Zhang Z, Coppola G, Mao W, Futai K, Karydas A, Geschwind MD, Tartaglia MC, Gao F, Gianni D, Sena-Esteves M, Geschwind DH, Miller BL, Farese RV, Gao FB (2012) Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Rep 2:789–798. (PMID: 230633623532907)
Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S, Lipton SA (2011) Brief report direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Stem Cell 9:113–118. https://doi.org/10.1016/j.stem.2011.07.002.
Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741. (PMID: 20821501)
Antill-O’Brien N, Bourke J, O’Connell CD (2019) Layer-by-layer: the case for 3D bioprinting neurons to create patient-specific epilepsy models. Materials (Basel) 12:3218.
Arber C, Lovejoy C, Wray S (2017) Stem cell models of Alzheimer’s disease: progress and challenges. Alzheimers Res Ther 9:1–17.
Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R (2017) The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci 10:1–22.
Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Suñol C, van Thriel C, Whelan M, Fritsche E (2015) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45:83–91. (PMID: 256050285072123)
Bayir E, Sendemir A, Missirlis YF (2019) Mechanobiology of cells and cell systems, such as organoids. Biophys Rev 11:721–728. (PMID: 315021906815306)
Bergmann S, Lawler SE, Qu Y, Fadzen CM, Wolfe JM, Regan MS, Pentelute BL, Agar NYR, Cho CF (2018) Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc 13:2827–2843. (PMID: 303822436673652)
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R (2019) Drugs for the treatment of Zika virus infection. J Med Chem.
Bhinge A, Namboori SC, Zhang X, VanDongen AMJ, Stanton LW (2017) Genetic correction of SOD1 mutant iPSCs reveals ERK and JNK activated AP1 as a driver of neurodegeneration in amyotrophic lateral sclerosis. Stem Cell Rep 8:856–869. https://doi.org/10.1016/j.stemcr.2017.02.019.
Bian S, Repic M, Guo Z, Kavirayani A, Burkard T, Bagley JA, Krauditsch C, Knoblich JA (2018) Genetically engineered cerebral organoids model brain tumor formation. Nat Methods 15:748–748. http://www.nature.com/articles/s41592-018-0118-8. (PMID: 301355606345371)
Boissart C, Poulet A, Georges P, Darville H, Julita E, Delorme R, Bourgeron T, Peschanski M, Benchoua A (2013) Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Transl Psychiatry 3:e294–e211. https://doi.org/10.1038/tp.2013.71. (PMID: 239629243756296)
Boisvert EM, Engle SJ, Hallowell SE, Liu P, Wang Z (2015) The specification and maturation of nociceptive neurons from human embryonic stem cells. Nat Publ Gr:1–12. https://doi.org/10.1038/srep16821.
Bunker JM, Leslie W, Jordan MA, Feinstein SC (2004) Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration. Mol Biol Cell 15:2720–2728. (PMID: 15020716420096)
Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 112:15672–15677. (PMID: 2664456426644564)
Carusi A, Davies MR, de Grandis G, Escher BI, Hodges G, KMY L, Whelan M, Willett C, Ankley GT (2018) Science of the total environment harvesting the promise of AOPs: an assessment and recommendations. Sci Total Environ 628–629:1542–1556. https://doi.org/10.1016/j.scitotenv.2018.02.015. (PMID: 300455725888775)
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. http://www.nature.com/nbt/journal/v27/n3/abs/nbt.1529.html. (PMID: 192524842756723)
Chang CY, Chen SM, Lu HE, Lai SM, Lai PS, Shen PW, Chen PY, Shen CI, Harn HJ, Lin SZ, Hwang SM, Su HL (2015) N-butylidenephthalide attenuates Alzheimer’s disease-like cytopathy in down syndrome induced pluripotent stem cell-derived neurons. Sci Rep 5:1–7.
Cheng C, Fass DM, Folz-Donahue K, MacDonald ME, Haggarty SJ (2017) Highly expandable human iPS cell-derived neural progenitor cells (NPC) and neurons for central nervous system disease modeling and high-throughput screening. Curr Protoc Hum Genet 93:21.8.1–21.8.21.
Cho CF, Wolfe JM, Fadzen CM, Calligaris D, Hornburg K, Chiocca EA, Agar NYR, Pentelute BL, Lawler SE (2017) Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 8:1–14. https://doi.org/10.1038/ncomms15623.
Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515:274. https://doi.org/10.1038/nature13800. (PMID: 253070574366007)
Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou Y, Freyzon Y, Cho S, Mungenast AE, Muffat J, Mitalipova M, Pluth MD, Jui NT, Schul̈e B, Lippard SJ, Tsai LH, Krainc D, Buchwald SL et al (2013) Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342:983–987. (PMID: 241589044022187)
Chung SY, Kishinevsky S, Mazzulli JR, Graziotto J, Mrejeru A, Mosharov EV, Puspita L, Valiulahi P, Sulzer D, Milner TA, Taldone T, Krainc D, Studer L, won Shim J (2016) Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation. Stem Cell Reports 7:664–677. https://doi.org/10.1016/j.stemcr.2016.08.012. (PMID: 276416475063469)
Consortium TH iPSC (2017) Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice. Nat Neurosci 20:648–660.
Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G, Deleidi M, Lawson T, Bogetofte H, Perez-Torres E, Clark L, Moskowitz C, Mazzulli J, Chen L, Volpicelli-Daley L et al (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4:141ra90. (PMID: 227642063462009)
Corti S, Nizzardo M, Simone C, Falcone M, Nardini M, Ronchi D, Donadoni C, Salani S, Riboldi G, Magri F, Menozzi G, Bonaglia C, Rizzo F, Bresolin N, Comi GP (2012) Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 4:1–32.
Crofton KM, Mundy WR, Shafer TJ (2012) Developmental neurotoxicity testing: a path forward. Congenit Anom 52:140–146.
Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JLM, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brandaõ WN, Rossato C, Andrade DG, Faria DDP, Garcez AT, Buchpigel CA, Braconi CT et al (2016) The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534:267–271. (PMID: 272792264902174)
D’Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, Johnson JW, Mc Clain L, Macdonald ML, Di Maio R, Schurdak ME, Piazza P, Viggiano L, Sweet R, Kinchington PR, Bhattacharjee AG, Yolken R, Nimgaonka VL (2014) Large-scale generation of human ipsc-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 10:365–377. (PMID: 25629202)
Dai S, Li R, Long Y, Titus S, Zhao J, Huang R, Xia M, Zheng W (2016) One-step seeding of neural stem cells with vitronectin- supplemented medium for high throughput screening assays. J Biomol Screen 21:1112–1124. (PMID: 276476685285267)
Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258–265. (PMID: 271620295116380)
Danon JJ, Reekie TA, Kassiou M (2019) Challenges and opportunities in central nervous system drug discovery. Trends Chem 1:612–624. https://doi.org/10.1016/j.trechm.2019.04.009.
Di Cesare ML, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C (2014) Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol 261. https://doi.org/10.1016/j.expneurol.2014.06.016.
Djelloul M, Holmqvist S, Boza-Serrano A, Azevedo C, Yeung MS, Goldwurm S, Frisén J, Deierborg T, Roybon L (2015) Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. Stem Cell Rep 5:174–184.
Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V (2014) Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep 3:250–259. https://doi.org/10.1016/j.stemcr.2014.06.012.
Douvaras P, Sun B, Wang M, Kruglikov I, Lallos G, Zimmer M, Terrenoire C, Zhang B, Gandy S, Schadt E, Freytes DO, Noggle S, Fossati V (2017) Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Rep 8:1516–1524. https://doi.org/10.1016/j.stemcr.2017.04.023.
Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA (2014) Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener 9:1–14.
Efthymiou A, Shaltouki A, Steiner JP, Jha B, Heman-Ackah SM, Swistowski A, Zeng X, Rao MS, Malik N (2014) Functional screening assays with neurons generated from pluripotent stem cell-derived neural stem cells. J Biomol Screen 19:32–43. (PMID: 24019252)
Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I, Aoi T, Watanabe A, Yamada Y, Morizane A, Takahashi J, Ayaki T, Ito H, Yoshikawa K, Yamawaki S, Suzuki S et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104. (PMID: 22855461)
Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, Cui QL, Schambach A, Kim KP, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Schöler HR, Baron-Van Evercooren A, Kuhlmann T (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A 114:E2243–E2252. (PMID: 282463305358375)
Eiraku M, Watanabe K, Matsuo-takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Article self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Stem Cell 3:519–532. https://doi.org/10.1016/j.stem.2008.09.002.
Engle SJ, Puppala D (2013) Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12:669–677. https://doi.org/10.1016/j.stem.2013.05.011. (PMID: 23746976)
Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L (2012) A novel in vitro human microglia model: characterization of human monocyte-derived microglia. J Neurosci Methods 209:79–89. (PMID: 22659341)
Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W (2019) Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 24:992–999. https://doi.org/10.1016/j.drudis.2019.01.007. (PMID: 306649376476685)
Flames N, Gelman DM, Rubenstein JLR, Puelles L, Marı O, Herna UM, Joan S (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27:9682–9695. (PMID: 178046294916652)
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J (2018a) Current availability of stem cell-based in vitro methods for developmental neurotoxicity (DNT) testing. Toxicol Sci 165:21–30. (PMID: 29982830)
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J (2018b) Development of the concept for stem cell-based developmental neurotoxicity evaluation. Toxicol Sci 165:14–20. https://academic.oup.com/toxsci/article/165/1/14/5046970. (PMID: 29982725)
Garcez P, Loiola E, Madeiro da Costa R, Higa L, Trindade P, Delvecchio R, Nascimento J, Brindeiro R, Tanuri A, Rehen S (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 13:816–818.
García-León JA, Cabrera-Socorro A, Eggermont K, Swijsen A, Terryn J, Fazal R, Nami FA, Ordovás L, Quiles A, Lluis F, Serneels L, Wierda K, Sierksma A, Kreir M, Pestana F, Van Damme P, De Strooper B, Thorrez L, Ebneth A, Verfaillie CM (2018a) Generation of a human induced pluripotent stem cell–based model for tauopathies combining three microtubule-associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimers Dement 14:1261–1280. (PMID: 30036493)
García-León JA, Kumar M, Boon R, Chau D, One J, Wolfs E, Eggermont K, Berckmans P, Gunhanlar N, de Vrij F, Lendemeijer B, Pavie B, Corthout N, Kushner SA, Dávila JC, Lambrichts I, Hu WS, Verfaillie CM (2018b) SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Rep 10:655–672.
Ghaffari LT, Starr A, Nelson AT, Sattler R (2018) Representing diversity in the dish: using patient-derived in vitro models to recreate the heterogeneity of neurological disease. Front Neurosci 12:1–18.
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. (PMID: 209662143719181)
Grabert K, Michoel T, Karavolos MH, Clohisey S, Kenneth Baillie J, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain regionâ ‘dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516. (PMID: 47683464768346)
Gribkoff VK, Kaczmarek LK (2017) The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 120:11–19. https://doi.org/10.1016/j.neuropharm.2016.03.021. (PMID: 26979921)
Guenther MG (2011) Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics 3:323–343. (PMID: 22122341)
Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, Cader MZ, Wade-Martins R, James WS, Cowley SA (2017) A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Rep 8:1727–1742. https://doi.org/10.1016/j.stemcr.2017.05.017.
Haggarty SJ, Silva MC, Cross A, Brandon NJ, Perlis RH (2016) Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci 73:104–115. https://doi.org/10.1016/j.mcn.2016.01.011. (PMID: 268264985292010)
Hall CE, Yao Z, Choi M, Tyzack GE, Serio A, Luisier R, Harley J, Preza E, Arber C, Crisp SJ, Watson PMD, Kullmann DM, Abramov AY, Wray S, Burley R, Loh SHY, Martins LM, Stevens MM, Luscombe NM, Sibley CR et al (2017) Progressive motor neuron pathology and the role of astrocytes in a human stem cell model of VCP-related ALS. Cell Rep 19:1739–1749. https://doi.org/10.1016/j.celrep.2017.05.024. (PMID: 285645945464993)
Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ, Vowles J, James WS, Cowley SA, Wade-Martins R (2014) Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One 9:e87388. (PMID: 245862733931621)
Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, García-Sastre A, Stanley ER, Ginhoux F, Frenette PS et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804. (PMID: 23601688)
Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519. (PMID: 30331706568832)
Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, Chiu FL, Kuo HC, Chang C, Chern Y (2015) Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78:178–192. (PMID: 25914140)
Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L (2015) Short article direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules short article direct conversion of normal and Alzheimer ’ s disease human fibroblasts into neuronal cells by small molecules. Stem Cell 17:204–212. https://doi.org/10.1016/j.stem.2015.07.006.
Huang YWA, Zhou B, Wernig M, Südhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168:427–441.e21. (PMID: 53108355310835)
Ichida JK, Kiskinis E (2015) Probing disorders of the nervous system using reprogramming approaches. EMBO J 34:1456–1477. (PMID: 259253864474524)
Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LSB (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482:216–220. https://doi.org/10.1038/nature10821. (PMID: 222780603338985)
Janabi N, Peudenier S, Héron B, Ng KH, Tardieu M (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett 195:105–108. (PMID: 7478261)
Jones VC, Atkinson-Dell R, Verkhratsky A, Mohamet L (2017) Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis 8:1–11. https://doi.org/10.1038/cddis.2017.89.
Joung D, Truong V, Neitzke CC, Guo SZ, Walsh PJ, Monat JR, Meng F, Park SH, Dutton JR, Parr AM, McAlpine MC (2018) 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv Funct Mater 28:1–10.
Kanat O, Ertas H, Caner B (2017) Platinum-induced neurotoxicity: a review of possible mechanisms. World J Clin Oncol 8:329–336. (PMID: 288486995554876)
Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O (2018) Human brain organoids on a chip reveal the physics of folding. Nat Phys 14:515–522. (PMID: 297607645947782)
Kayama T, Suzuki I, Odawara A, Sasaki T, Ikegaya Y (2018) Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes. Biochem Biophys Res Commun 495:1028–1033. https://doi.org/10.1016/j.bbrc.2017.11.115. (PMID: 29170135)
Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, Han S, Peng T, Thams S, Mikkilineni S, Mellin C, Merkle FT, Davis-dusenbery BN, Ziller M, Oakley D, Ichida J, Dicostanza S, Atwater N, Maeder ML, Goodwin MJ et al (2014) Article pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Stem Cell 43:1–15. https://doi.org/10.1016/j.stem.2014.03.004.
Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA (2003) PPARα agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33:655–780. (PMID: 14727734)
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12:487–496. https://doi.org/10.1016/j.stem.2013.01.009. (PMID: 23434393)
Kriks S, Shim J, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-reid L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551. https://doi.org/10.1038/nature10648. (PMID: 220569893245796)
Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125. (PMID: 25035496)
Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35:659–666. (PMID: 285625945824977)
Lee JH, Mitchell RR, McNicol JD, Shapovalova Z, Laronde S, Tanasijevic B, Milsom C, Casado F, Fiebig-Comyn A, Collins TJ, Singh KK, Bhatia M (2015) Single transcription factor conversion of human blood fate to NPCs with CNS and PNS developmental capacity. Cell Rep 11:1367–1376. https://doi.org/10.1016/j.celrep.2015.04.056. (PMID: 26004181)
Leist M, Hartung T (2013) Reprint: inflammatory findings on species extrapolations: humans are definitely no 70-kg mice1. ALTEX 30:227–230. (PMID: 23665808)
Leone C, Le Pavec G, Même W, Porcheray F, Samah B, Dormont D, Gras G (2006) Characterization of human monocyte-derived microglia-like cells. Glia 54:183–192. (PMID: 16807899)
Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242. https://doi.org/10.1038/nri.2017.125. (PMID: 2915159029151590)
Li Y, Muffat J, Omer A, Bosch I, Lancaster MA, Sur M, Gehrke L, Knoblich JA, Jaenisch R (2017) Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20:385–396.e3. https://doi.org/10.1016/j.stem.2016.11.017. (PMID: 2804189528041895)
Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O’Brien TD (2016) Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med 5:970–979. https://doi.org/10.5966/sctm.2015-0305. (PMID: 49228554922855)
Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang S (2013) Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc 8:1670–1679. https://doi.org/10.1038/nprot.2013.106. (PMID: 239285004121169)
Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H, Yang D, Petrucelli L, Miller BL, Almeida S, Gao FB (2016) Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92:383–391. https://doi.org/10.1016/j.neuron.2016.09.015. (PMID: 277204815111366)
Lowry WE, Plath K (2008) The many ways to make an iPS cell. Nat Biotechnol 26:1246–1248. (PMID: 18997764)
Lundin A, Delsing L, Clausen M, Ricchiuto P, Sanchez J, Sabirsh A, Ding M, Synnergren J, Zetterberg H, Brolén G, Hicks R, Herland A, Falk A (2018) Human iPS-derived astroglia from a stable neural precursor state show improved functionality compared with conventional astrocytic models. Stem Cell Rep 10:1030–1045. https://linkinghub.elsevier.com/retrieve/pii/S221367111830047X.
Malik N, Efthymiou AG, Mather K, Chester N, Wang X, Nath A, Rao MS, Steiner JP (2014) Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons. Neurotoxicology 45:192–200. (PMID: 254547214302729)
Manabe T, Tatsumi K, Inoue M, Matsuyoshi H, Makinodan M, Yokoyama S, Wanaka A (2005) L3/Lhx8 is involved in the determination of cholinergic or GABAergic cell fate. J Neurochem 94:723–730. (PMID: 16000160)
Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M, Gerstein M, Grigorenko EL, Chawarska K, Pelphrey KA, Howe JR, Vaccarino FM (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:375–390. (PMID: 261861914519016)
Masjosthusmann S, Barenys M, El-Gamal M, Geerts L, Gerosa L, Gorreja A, Kühne B, Marchetti N, Tigges J, Viviani B, Witters H, Fritsche E (2018) Literature review and appraisal on alternative neurotoxicity testing methods. EFSA Support Publ 15:1–108.
Massaro EJ (2002) Handbook of neurotoxicology. Springer Science + Business Media, New York.
Matsui TK, Matsubayashi M, Sakaguchi YM, Hayashi RK, Zheng C, Sugie K, Hasegawa M, Nakagawa T, Mori E (2018) Six-month cultured cerebral organoids from human ES cells contain matured neural cells. Neurosci Lett 670:75–82. https://doi.org/10.1016/j.neulet.2018.01.040. (PMID: 29398520)
Maury Y, Côme J, Piskorowski RA, Salah-Mohellibi N, Chevaleyre V, Peschanski M, Martinat C, Nedelec S (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol 33:89–96. (PMID: 25383599)
McComish SF, Caldwell MA (2018) Generation of defined neural populations from pluripotent stem cells. Philos Trans R Soc B Biol Sci 373:20170214.
McQuade A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M (2018) Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener 13:1–13.
Mertens J, Reid D, Lau S, Kim Y, Gage FH (2018) Aging in a dish: iPSC-derived and directly induced neurons for studying brain aging and age-related neurodegenerative diseases. Annu Rev Genet 52:271–293. (PMID: 302082916415910)
Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, Bakiasi G, Tsai LH, Aubourg P, Ransohoff RM, Jaenisch R (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22:1358–1367. (PMID: 276689375101156)
Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin LNP, Walsh DM, Selkoe DJ, Young-Pearse TL (2014) The familial alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 23:3523–3536. (PMID: 245248974049307)
Nagai A, Mishima S, Ishida Y, Ishikura H, Harada T, Kobayashi S, Kim SU (2005) Immortalized human microglial cell line: phenotypic expression. J Neurosci Res 81:342–348. (PMID: 15957187)
Naghieh S, Sarker MD, Abelseth E, Chen X (2019) Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J Mech Behav Biomed Mater 93:183–193. (PMID: 30802775)
National Institute of Health Neurotoxicity Information (2019). https://www.ninds.nih.gov/disorders/all-disorders/neurotoxicity-information-page#disorders-r1.
Nehme R, Zuccaro E, Ghosh SD, Fu Z, Ghosh SD, Li C, Sherwood JL, Pietilainen O (2018) Combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission resource combining NGN2 programming with developmental patterning generates human excitatory neurons with NMDAR-mediated. Cell Rep 23:2509–2523. https://doi.org/10.1016/j.celrep.2018.04.066. (PMID: 297918596003669)
Nzou G, Wicks RT, Wicks EE, Seale SA, Sane CH, Chen A, Murphy SV, Jackson JD, Atala AJ (2018) Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-25603-5.
Oksanen M, Petersen AJ, Naumenko N, Puttonen K, Lehtonen Š, Gubert Olivé M, Shakirzyanova A, Leskelä S, Sarajärvi T, Viitanen M, Rinne JO, Hiltunen M, Haapasalo A, Giniatullin R, Tavi P, Zhang SC, Kanninen KM, Hämäläinen RH, Koistinaho J (2017) PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Rep 9:1885–1897.
Oliveira LMA, Falomir-Lockhart LJ, Botelho MG, Lin KH, Wales P, Koch JC, Gerhardt E, Taschenberger H, Outeiro TF, Lingor P, Schüle B, Arndt-Jovin DJ, Jovin TM (2015) Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson’s patient-derived induced pluripotent stem cells. Cell Death Dis 6:1–13.
Ormel PR, Vieira de Sá R, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, Johansen LE, van Dijk RE, Scheefhals N, Berdenis van Berlekom A, Ribes Martínez E, Kling S, MacGillavry HD, van den Berg LH, Kahn RS, Hol EM, de Witte LD, Pasterkamp RJ (2018) Microglia innately develop within cerebral organoids. Nat Commun 9:4167. https://doi.org/10.1038/s41467-018-06684-2. (PMID: 303018886177485)
Osaki T, Shin Y, Sivathanu V, Campisi M, Kamm RD (2018) In vitro microfluidic models for neurodegenerative disorders. Adv Healthc Mater 7.
Paini A, Leonard JA, Joossens E, Bessems JGM, Desalegn A, Dorne JL, Gosling JP, Heringa MB, Klaric M, Kliment T, Kramer NI, Loizou G, Louisse J, Lumen A, Madden JC, Patterson EA, Proenca S, Punt A, Setzer RW, Suciu N et al (2019) Next generation physiologically based kinetic (NG-PBK) models in support of regulatory decision making. Comput Toxicol (Amsterdam, Netherlands) 9:61–72.
Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, Kim G, Brown MA, Elkahloun AG, Maric D, Sweeney CL, Gossa S, Malech HL, McGavern DB, Park JK (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20:753–759. (PMID: 282532335404968)
Park DY, Lee J, Chung JJ, Jung Y, Kim SH (2019) Integrating organs-on-chips: multiplexing, scaling, vascularization, and innervation. Trends Biotechnol 38:99–112. https://doi.org/10.1016/j.tibtech.2019.06.006. (PMID: 31345572)
Pasca SP (2018) The rise of three-dimensional human brain cultures. Nature 553:437–445. https://doi.org/10.1038/nature25032. (PMID: 29364288)
Patani R, Lewis PA, Trabzuni D, Puddifoot CA, Wyllie DJA, Walker R, Smith C, Hardingham GE, Weale M, Hardy J, Chandran S, Ryten M (2012) Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis. J Neurochem 122:738–751. (PMID: 226817033504076)
Pérez-Cerdá F, Sánchez-Gómez MV, Matute C (2015) Pío del Río hortega and the discovery of the oligodendrocytes. Front Neuroanat 9:7–12.
Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032. (PMID: 271184254900885)
Qian X, Nguyen HN, Jacob F, Song H, Ming GL (2017) Using brain organoids to understand Zika virus-induced microcephaly. Dev 144:952–957.
Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Min Yang S, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, Boyden ES, Lichtman JW, Williams ZM, McCarroll SA, Arlotta P (2017) Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545:48–53. http://www.nature.com/articles/nature22047. (PMID: 284454625659341)
Raja WK, Mungenast AE, Lin YT, Ko T, Abdurrob F, Seo J, Tsai LH (2016) Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One 11:1–18.
Rana P, Luerman G, Hess D, Rubitski E, Adkins K, Somps C (2017) Toxicology in vitro utilization of iPSC-derived human neurons for high-throughput drug- induced peripheral neuropathy screening. Toxicol Vitr 45:111–118. https://doi.org/10.1016/j.tiv.2017.08.014.
Ransohoff RM, El Khoury J (2016) Microglia in health and disease. Cold Spring Harb Perspect Biol 8:a020560. http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a020560. (PMID: 4691795)
Rindt H, Tom CM, Lorson CL, Mattis VB (2017) Optimization of trans-splicing for Huntington’s disease RNA therapy. Front Neurosci 11:1–13.
Ryan KJ, White CC, Patel K, Xu J, Olah M, Replogle JM, Frangieh M, Cimpean M, Winn P, McHenry A, Kaskow BJ, Chan G, Cuerdon N, Bennett DA, Boyd JD, Imitola J, Elyaman W, De Jager PL, Bradshaw EM (2017) A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci Transl Med 9:1–13.
Sahara S, Yanagawa Y, O’Leary DDM, Stevens CF (2012) The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci 32:4755–4761. (PMID: 224920313325497)
Sanchez-Danes A, Richaud-patin Y, Carballo-carbajal I, Sa A, Caig C, Mora S, Di Guglielmo C, Ezquerra M, Vila M, Cuervo AM, Tolosa E, Consiglio A, Raya A (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395. (PMID: 224077493403296)
Sareen D, Ebert AD, Heins BM, McGivern JV, Ornelas L, Svendsen CN (2012) Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. PLoS One 7:e39113. (PMID: 227239413378532)
Sareen D, O’Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with C9ORF72 repeat expansion. Sci Transl Med 5:1–57.
Schröter F, Sleegers K, Van Cauwenberghe C, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J (2016) Lymphoblast-derived integration-free iPSC lines from a female and male Alzheimer’s disease patient expressing different copy numbers of a coding CNV in the Alzheimer risk gene CR1. Stem Cell Res 17:560–563. https://doi.org/10.1016/j.scr.2016.10.003. (PMID: 27789410)
Seidel D, Jahnke H, Englich B, Girard M, Robitzki AA (2017) In vitro field potential monitoring on a multi-microelectrode array for the electrophysiological long-term screening of neural stem cell maturation. Analyst 142:1929–1937. http://xlink.rsc.org/?DOI=C6AN02713J. (PMID: 28484750)
Sellgren CM, Sheridan SD, Gracias J, Xuan D, Fu T, Perlis RH (2017) Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry 22:170–177. (PMID: 27956744)
Sherman SP, Bang AG (2018) High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell-derived neurons. DMM Dis Model Mech 11:dmm031906. (PMID: 29361516)
Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in down syndrome. Sci Transl Med 4:124ra29. https://doi.org/10.1016/j.jalz.2012.05.1946. (PMID: 223444634129935)
Shi Y, Kirwan P, Smith J, Robinson HPC, Livesey FJ (2014) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15:1–25. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3882590&tool=pmcentrez&rendertype=abstract.
Shi Y, Inoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130. (PMID: 27980341)
Silva MC, Haggarty SJ (2019) Human pluripotent stem cell–derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci.
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:1–18.
Stacey P, Wassermann AM, Kammonen L, Impey E, Wilbrey A, Cawkill D (2018) Plate-based phenotypic screening for pain using human iPSC-derived sensory neurons. SLAS Disc 23:585–596.
Suga M, Kondo T, Inoue H (2019) Modeling neurological disorders with human pluripotent stem cell-derived astrocytes. Int J Mol Sci 20:9–14.
Szlachcic WJ, Switonski PM, Krzyzosiak WJ, Figlerowicz M, Figiel M (2015) Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech 8:1047–1057. (PMID: 260921284582098)
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. http://www.ncbi.nlm.nih.gov/pubmed/18035408.
Thomson JA, Itskovitz-eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1148. (PMID: 9804556)
Toutain P-L, Ferran A, Bousquet-Melou A (2010) Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol:19–48.
Tukker AM, De Groot MWGDM, Wijnolts FMJ, Kasteel EEJ, Hondebrink L, Westerink RHS (2016) Research article is the time right for in vitro neurotoxicity testing using human iPSC-derived neurons? ALTEX 33:261–271. (PMID: 27010910)
Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS (2018) Neurotoxicology human iPSC-derived neuronal models for in vitro neurotoxicity assessment. Neurotoxicology 67:215–225. https://doi.org/10.1016/j.neuro.2018.06.007. (PMID: 29909083)
Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng P, Klyachko VA, Nerbonne JM, Yoo AS (2014) NeuroResource generation of human striatal neurons by MicroRNA-dependent direct conversion of fibroblasts. Neuron 84:311–323. https://doi.org/10.1016/j.neuron.2014.10.016. (PMID: 253743574223654)
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. (PMID: 201074392829121)
von Bartheld CS, Bahney J, Herculano-houzel S (2017) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895.
Wang S, Bates J, Li X, Schanz S, Chandler-militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013) Clinical progress progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Stem Cell 12:252–264. https://doi.org/10.1016/j.stem.2012.12.002.
Wang C, Ward ME, Chen R, Liu K, Tracy TE, Chen X, Xie M, Sohn PD, Ludwig C, Meyer-Franke A, Karch CM, Ding S, Gan L (2017) Scalable production of iPSC-derived human neurons to identify Tau-Lowering compounds by high-content screening. Stem Cell Rep 9:1221–1233. https://doi.org/10.1016/j.stemcr.2017.08.019.
Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, Ang CE, Treutlein B, Xiang C, Baubet V, Suchy FP, Sankar V, Sim S, Quake SR, Dahmane N, Wernig M, Chang HY (2017) Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep 20:3236–3247. (PMID: 289542385646379)
Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. (PMID: 208883163656821)
Watanabe M, Buth JE, Vishlaghi N, de la Torre-Ubieta L, Taxidis J, Khakh BS, Coppola G, Pearson CA, Yamauchi K, Gong D, Dai X, Damoiseaux R, Aliyari R, Liebscher S, Schenke-Layland K, Caneda C, Huang EJ, Zhang Y, Cheng G, Geschwind DH et al (2017) Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Rep 21:517–532. https://doi.org/10.1016/j.celrep.2017.09.047. (PMID: 290206365637483)
Woodruff G, Young JE, Martinez FJ, Buen F, Gore A, Kinaga J, Li Z, Yuan SH, Zhang K, Goldstein LSB (2013) The Presenilin-1 δE9 mutation results in reduced γ-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5:974–985. https://doi.org/10.1016/j.celrep.2013.10.018. (PMID: 24239350)
Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, Tcw J, Kouznetsova J, Ogden SC, Hammack C, Jacob F, Nguyen HN, Itkin M, Hanna C, Shinn P, Allen C, Michael SG, Simeonov A, Huang W, Christian KM et al (2016) Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 22:1101–1107. (PMID: 275713495386783)
Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539. (PMID: 21900357)
Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K, Saido TC, Nakahata T, Asada T, Yamanaka S, Iwata N, Inoue H (2011) Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS One 6:e25788. (PMID: 219849493184175)
Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, Ang CE, Tang Y, Flores Q, Mall M, Wapinski O, Li M, Ahlenius H, Rubenstein JL, Chang HY, Buylla AA, Südhof TC, Wernig M (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14:621–628. https://doi.org/10.1038/nmeth.4291. (PMID: 285046795567689)
Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dometsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228–231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf. (PMID: 217537543348862)
Young JE, Boulanger-Weill J, Williams DA, Woodruff G, Buen F, Revilla AC, Herrera C, Israel MA, Yuan SH, Edland SD, Goldstein LSB (2015) Elucidating molecular phenotypes caused by the SORL1 Alzheimer’s disease genetic risk factor using human induced pluripotent stem cells. Cell Stem Cell 16:373–385. https://doi.org/10.1016/j.stem.2015.02.004. (PMID: 257720714388804)
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. (PMID: 18029452)
Yu J, Hu K, Smuga-otto K, Tian S, Stewart R, Igor I, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801. (PMID: 27580532758053)
Yu D, Swaroop M, Wang M, Baxa U, Yang R, Yan Y, Coksaygan T, DeTolla L, Marugan JJ, Austin CP, Mckew JC, Gong D-W, Zheng W (2014) Niemann-Pick disease type C: induced pluripotent stem cell- derived neuronal cells for modeling neural disease and evaluating drug efficacy. J Biomol Screen 19:1164–1173. (PMID: 249071264529815)
Zhang Y, Pak CH, Han Y, Ahlenius H, Zhang Z, Chanda S, Marro S, Patzke C, Acuna C, Covy J, Xu W, Yang N, Danko T, Chen L, Wernig M, Südhof TC (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785–798. (PMID: 237642843751803)
Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ, Mukherjee S, Tomishima M, Brennand KJ, Zhang Q, Schwartz RE, Evans T, Studer L, Chen S (2017) High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21:274–283.e5. https://doi.org/10.1016/j.stem.2017.06.017. (PMID: 287362175553280)
Zhuang X, Lu C (2016) PBPK modeling and simulation in drug research and development. Acta Pharm Sin B 6:430–440. (PMID: 279096505125732)
فهرسة مساهمة: Keywords: Bioprinted neuronal models; Brain organoids; CNS disease models; Developmental neurotoxicity (DNT); Human induced pluripotent stem cells (hiPSCs); Microglia culture; Neurotoxicity (NT)
تواريخ الأحداث: Date Created: 20200629 Date Completed: 20210329 Latest Revision: 20210329
رمز التحديث: 20240628
DOI: 10.1007/164_2020_367
PMID: 32594299
قاعدة البيانات: MEDLINE