دورية أكاديمية

Computational modeling of the strength of the ascending thoracic aortic media tissue under physiologic biaxial loading conditions.

التفاصيل البيبلوغرافية
العنوان: Computational modeling of the strength of the ascending thoracic aortic media tissue under physiologic biaxial loading conditions.
المؤلفون: Maiti S; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address: spm54@pitt.edu., Thunes JR; ANSYS Canada Ltd, Waterloo, ON, Canada., Fortunato RN; Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States., Gleason TG; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States., Vorp DA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States; Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Surgery, University of Pittsburgh, Pittsburgh, PA, United States; Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, United States.
المصدر: Journal of biomechanics [J Biomech] 2020 Jul 17; Vol. 108, pp. 109884. Date of Electronic Publication: 2020 Jun 14.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Elsevier Science Country of Publication: United States NLM ID: 0157375 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1873-2380 (Electronic) Linking ISSN: 00219290 NLM ISO Abbreviation: J Biomech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York ; Oxford : Elsevier Science
مواضيع طبية MeSH: Aortic Dissection* , Aortic Aneurysm, Thoracic*, Aorta ; Aortic Valve ; Biomechanical Phenomena ; Humans ; Stress, Mechanical ; Tensile Strength
مستخلص: Type A Aortic Dissection (TAAD) is a life-threatening condition involving delamination of ascending aortic media layers. While current clinical guidelines recommend surgical intervention for aneurysm diameter > 5.5 cm, high incidence of TAAD in patients below this diameter threshold indicates the pressing need for improved evidence-based risk prediction metrics. Construction of such metrics will require the knowledge of the biomechanical failure properties of the aortic wall tissue under biaxial loading conditions. We utilized a fiber-level finite element based structural model of the aortic tissue to quantify the relationship between aortic tissue strength and physiologically relevant biaxial stress state for nonaneurysmal and aneurysmal patient cohorts with tricuspid aortic valve phenotype. We found that the model predicted strength of the aortic tissue under physiologic biaxial loading conditions depends on the stress biaxiality ratio, defined by the ratio of the longitudinal and circumferential components of the tissue stress. We determined that predicted biaxial tissue strength is statistically similar to its uniaxial circumferential strength below biaxiality ratios of 0.68 and 0.69 for nonaneurysmal and aneurysmal cohorts, respectively. Beyond this biaxiality ratio, predicted biaxial strength for both cohorts reduced drastically to a magnitude statistically similar to its longitudinal strength. We identified fiber-level failure mechanisms operative under biaxial stress state governing aforementioned tissue failure behavior. These findings are an important first step towards the development of mechanism-based TAAD risk assessment metrics for early identification of high-risk patients.
(Copyright © 2020. Published by Elsevier Ltd.)
References: Circulation. 2007 Sep 4;116(10):1120-7. (PMID: 17709637)
Acta Biomater. 2016 Sep 15;42:273-285. (PMID: 27345137)
J Biomech. 2016 Jun 14;49(9):1562-1569. (PMID: 27113538)
Ann Thorac Surg. 2003 Apr;75(4):1210-4. (PMID: 12683565)
Ann Thorac Surg. 2011 Feb;91(2):458-63. (PMID: 21256291)
Acta Biomater. 2016 Sep 15;42:286-295. (PMID: 27395826)
J Biomech. 1983;16(1):31-44. (PMID: 6833308)
Am J Cardiol. 1972 Aug;30(3):263-73. (PMID: 4557973)
J Biomech. 2009 Jun 19;42(9):1320-5. (PMID: 19394942)
Med Eng Phys. 2016 Feb;38(2):121-30. (PMID: 26669606)
J Biomech. 2018 Apr 11;71:84-93. (PMID: 29544877)
Comput Biol Med. 1998 Jul;28(4):377-92. (PMID: 9805198)
Ann Thorac Surg. 2013 Dec;96(6):2147-54. (PMID: 24021768)
J Biomech. 2008;41(2):447-53. (PMID: 17880984)
Biomech Model Mechanobiol. 2018 Apr;17(2):577-587. (PMID: 29134291)
J Biomech. 2014 Mar 21;47(5):935-943. (PMID: 24524988)
J Biomech. 2008;41(5):1044-52. (PMID: 18222457)
Ann Thorac Surg. 2014 Jul;98(1):65-71. (PMID: 24881863)
Invest Ophthalmol Vis Sci. 1997 Feb;38(2):357-63. (PMID: 9040468)
Cardiovasc Eng. 2006 Dec;6(4):123-31. (PMID: 17136596)
J Thorac Cardiovasc Surg. 2014 Mar;147(3):1056-64. (PMID: 23764410)
Circulation. 2005 Aug 23;112(8):1098-105. (PMID: 16116068)
J Biomech. 2014 Dec 18;47(16):3820-4. (PMID: 25468299)
J Biomech. 2013 Nov 15;46(16):2787-94. (PMID: 24075403)
J R Soc Interface. 2013 Mar 27;10(83):20121004. (PMID: 23536538)
Ann Biomed Eng. 2017 Mar;45(3):799-810. (PMID: 27600686)
Eur J Cardiothorac Surg. 2009 Jun;35(6):941-5; discussion 945-6. (PMID: 19237295)
Eur Heart J. 2014 Nov 1;35(41):2873-926. (PMID: 25173340)
Biomed Res Int. 2014;2014:820385. (PMID: 24991568)
J Biomech Eng. 2017 Jul 1;139(7):. (PMID: 28334369)
Med Eng Phys. 2009 Jan;31(1):1-9. (PMID: 18434231)
J Thorac Cardiovasc Surg. 2012 Feb;143(2):460-7. (PMID: 21868041)
J Biomech. 2012 Mar 15;45(5):805-14. (PMID: 22189249)
معلومات مُعتمدة: R01 HL109132 United States HL NHLBI NIH HHS; T32 HL076124 United States HL NHLBI NIH HHS
فهرسة مساهمة: Keywords: Aortic dissection; Biaxial loading; Fiber orientation; Finite element model; Physiologic tissue strength; Structural modelling; Tissue failure
تواريخ الأحداث: Date Created: 20200709 Date Completed: 20210514 Latest Revision: 20221207
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC8073541
DOI: 10.1016/j.jbiomech.2020.109884
PMID: 32635998
قاعدة البيانات: MEDLINE
الوصف
تدمد:1873-2380
DOI:10.1016/j.jbiomech.2020.109884