دورية أكاديمية

Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen.

التفاصيل البيبلوغرافية
العنوان: Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen.
المؤلفون: Vardhana SA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA., Hwee MA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Berisa M; The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Wells DK; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA., Yost KE; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA., King B; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Smith M; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Herrera PS; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Weill Cornell Medical College, New York, NY, USA., Chang HY; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA., Satpathy AT; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA., van den Brink MRM; Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Cross JR; The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Thompson CB; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. thompsonc@mskcc.org.; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA. thompsonc@mskcc.org.
المصدر: Nature immunology [Nat Immunol] 2020 Sep; Vol. 21 (9), pp. 1022-1033. Date of Electronic Publication: 2020 Jul 13.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مواضيع طبية MeSH: CD8-Positive T-Lymphocytes/*immunology , Lymphocytes, Tumor-Infiltrating/*immunology , Mitochondria/*metabolism , Neoplasms/*immunology, Adenosine Diphosphate/metabolism ; Animals ; Antigens, Neoplasm/immunology ; Antioxidants/pharmacology ; Cell Proliferation ; Cell Self Renewal ; Clonal Anergy/genetics ; Energy Metabolism ; Immune Tolerance ; Lymphocyte Activation ; Melanoma, Experimental ; Mice ; Mice, Inbred C57BL ; Oxidative Phosphorylation
مستخلص: The majority of tumor-infiltrating T cells exhibit a terminally exhausted phenotype, marked by a loss of self-renewal capacity. How repetitive antigenic stimulation impairs T cell self-renewal remains poorly defined. Here, we show that persistent antigenic stimulation impaired ADP-coupled oxidative phosphorylation. The resultant bioenergetic compromise blocked proliferation by limiting nucleotide triphosphate synthesis. Inhibition of mitochondrial oxidative phosphorylation in activated T cells was sufficient to suppress proliferation and upregulate genes linked to T cell exhaustion. Conversely, prevention of mitochondrial oxidative stress during chronic T cell stimulation allowed sustained T cell proliferation and induced genes associated with stem-like progenitor T cells. As a result, antioxidant treatment enhanced the anti-tumor efficacy of chronically stimulated T cells. These data reveal that loss of ATP production through oxidative phosphorylation limits T cell proliferation and effector function during chronic antigenic stimulation. Furthermore, treatments that maintain redox balance promote T cell self-renewal and enhance anti-tumor immunity.
التعليقات: Comment in: Cell Metab. 2020 Dec 1;32(6):905-907. (PMID: 33264601)
References: Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). (PMID: 21376230)
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015). (PMID: 262055834889009)
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018). (PMID: 295677057391259)
Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019). (PMID: 30635237)
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1 CD8 + tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019). (PMID: 306352366336113)
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018). (PMID: 303884566641984)
Im, S. J. et al. Defining CD8 + T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). (PMID: 275012485297183)
Miller, B. C. et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 307782526673650)
Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002). (PMID: 12121659)
Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25, 9543–9553 (2005). (PMID: 162276041265804)
Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016). (PMID: 274967325207350)
Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017). (PMID: 5470888)
Zhang, Y. et al. Enhancing CD8 + T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017). (PMID: 288986985751418)
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002). (PMID: 12086671)
Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). (PMID: 285144535693219)
Wherry, E. J. et al. Molecular signature of CD8 + T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007). (PMID: 17950003)
Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019). (PMID: 313590026689255)
Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019). (PMID: 65884096588409)
Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019). (PMID: 31207604)
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).
Sullivan, L. B. et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563 (2015). (PMID: 262322254522278)
Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). (PMID: 234159113582741)
Cardenas, C. et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca 2+ transfer to mitochondria. Cell 142, 270–283 (2010). (PMID: 206554682911450)
Loffler, M., Jockel, J., Schuster, G. & Becker, C. Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol. Cell Biochem. 174, 125–129 (1997). (PMID: 9309676)
Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015). (PMID: 262322244522279)
Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C. B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005). (PMID: 1600720116007201)
Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018). (PMID: 297130856117613)
Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD + /NADH ratio. Science 352, 231–235 (2016). (PMID: 271244604850741)
Flint, D. H., Tuminello, J. F. & Emptage, M. H. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993). (PMID: 8226748)
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998). (PMID: 9751731)
Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013). (PMID: 237468403804311)
Khan, O. et al. TOX transcriptionally and epigenetically programs CD8 + T cell exhaustion. Nature 571, 211–218 (2019). (PMID: 67132026713202)
Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8 + T cells. Immunity 42, 265–278 (2015). (PMID: 256802724346317)
Bevan, M. J., Epstein, R. & Cohn, M. The effect of 2-mercaptoethanol on murine mixed lymphocyte cultures. J. Exp. Med. 139, 1025–1030 (1974). (PMID: 48163002139578)
Mak, T. W. et al. Glutathione primes T cell metabolism for inflammation. Immunity 46, 675–689 (2017). (PMID: 28423341)
Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016). (PMID: 277897955484795)
Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016). (PMID: 277897995497589)
Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8 + T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009). (PMID: 196649432747257)
Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8 + T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009). (PMID: 196649412783637)
Gautam, S. et al. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat. Immunol. 20, 337–349 (2019). (PMID: 307782516489499)
Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8 + T cell exhaustion. Immunity 45, 358–373 (2016). (PMID: 274967294988919)
Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018). (PMID: 298920656110381)
Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016). (PMID: 275212695119632)
Taylor, A., Rothstein, D. & Rudd, C. E. Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res. 78, 706–717 (2018). (PMID: 29055015)
Ghosh, A. et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat. Med. 23, 242–249 (2017). (PMID: 280679005528161)
Pilon-Thomas, S., Mackay, A., Vohra, N. & Mule, J. J. Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J. Immunol. 184, 3442–3449 (2010). (PMID: 201947142913584)
Liang, Y. et al. Targeting IFNɑ to tumor by anti-PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade resistance. Nat. Commun. 9, 4586 (2018). (PMID: 303899126214895)
Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018). (PMID: 294439606028240)
Naviaux, R. K., Costanzi, E., Haas, M. & Verma, I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70, 5701–5705 (1996). (PMID: 8764092190538)
Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1765–1786 (2013). (PMID: 23975260)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 1619951716199517)
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). (PMID: 296081796700744)
Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015). (PMID: 267710214707969)
Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192, 1–15 (2002). (PMID: 12115731)
Schaefer, C. F. et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 37, D674–D679 (2009). (PMID: 1883236418832364)
van der Windt, G. J., Chang, C. H. & Pearce, E. L. Measuring bioenergetics in T cells using a Seahorse Extracellular Flux Analyzer. Curr. Protoc. Immunol. 113, 3.16B.1–3.16B.14 (2016).
Vardhana, S. A. et al. Glutamine independence is a selectable feature of pluripotent stem cells. Nat. Metab. 1, 676–687 (2019). (PMID: 315118486737941)
Millard, P., Letisse, F., Sokol, S. & Portais, J. C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28, 1294–1296 (2012). (PMID: 22419781)
Schworer, S. et al. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J. 39, e103334 (2020). (PMID: 32134147)
معلومات مُعتمدة: K08 CA237731 United States CA NCI NIH HHS; R01 HL147584 United States HL NHLBI NIH HHS; United States HHMI Howard Hughes Medical Institute; P30 CA008748 United States CA NCI NIH HHS; R25 AI140472 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Antigens, Neoplasm)
0 (Antioxidants)
61D2G4IYVH (Adenosine Diphosphate)
تواريخ الأحداث: Date Created: 20200715 Date Completed: 20201211 Latest Revision: 20220202
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7442749
DOI: 10.1038/s41590-020-0725-2
PMID: 32661364
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2916
DOI:10.1038/s41590-020-0725-2