دورية أكاديمية

Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context.

التفاصيل البيبلوغرافية
العنوان: Quantitative immunohistochemical analysis of myeloid cell marker expression in human cortex captures microglia heterogeneity with anatomical context.
المؤلفون: Swanson MEV; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.; Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand., Murray HC; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.; Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand., Ryan B; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.; Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand., Faull RLM; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.; Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand., Dragunow M; Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.; Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand., Curtis MA; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand. m.curtis@auckland.ac.nz.; Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand. m.curtis@auckland.ac.nz.
المصدر: Scientific reports [Sci Rep] 2020 Jul 16; Vol. 10 (1), pp. 11693. Date of Electronic Publication: 2020 Jul 16.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Fluorescent Antibody Technique/*methods , Microglia/*metabolism , Myeloid Cells/*metabolism , Temporal Lobe/*metabolism, Aged ; Aged, 80 and over ; Antigens, CD/metabolism ; Antigens, Differentiation, Myelomonocytic/metabolism ; Apoferritins/metabolism ; Autopsy ; Biomarkers/metabolism ; Female ; HLA-DR Antigens/metabolism ; Humans ; Macrophages/metabolism ; Male ; Membrane Glycoproteins/metabolism ; Middle Aged ; Receptors, Cell Surface/metabolism ; Receptors, IgG/metabolism ; Receptors, Immunologic/metabolism
مستخلص: Current immunohistochemical methods of studying microglia in the post-mortem human brain do not capture the heterogeneity of microglial function in response to damage and disease. We therefore investigated the expression of eight myeloid cell proteins associated with changes in function alongside Iba1. To study the myeloid cells we used immunohistochemistry on post-mortem human middle temporal gyrus sections from neurologically normal individuals. First we investigated co-labelling between the classical 'activation' marker, HLA-DR and each of the other markers of interest. Significant co-labelling between HLA-DR with CD206, CD32, CD163, or L-Ferritin was observed, although complete overlap of expression of HLA-DR with aforementioned markers was not observed. A qualitative assessment also demonstrated that perivascular macrophages expressed higher levels of the markers of interest we investigated than microglia, suggesting perivascular macrophages show a more phagocytic and antigen presentation state in the human brain. To determine whether the markers of interest were expressed in different functional states, the immunoreactivity for each marker was qualitatively assessed on microglial morphologies. Degenerating marker, L-Ferritin, was specific for dystrophic microglia. We demonstrate that microglial heterogeneity can be investigated in immunohistochemically stain post-mortem human tissue by integrating the single-cell abundance of proteins and cell morphology to infer function.
References: Ransohoff, R. M. A polarizing question: do M1 and M2 microglia exist. Nat. Neurosci. 19, 987–991 (2016). (PMID: 27459405)
Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006). (PMID: 17115040)
Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014). (PMID: 24316888)
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276-1290.e17 (2017). (PMID: 28602351)
Moore, C. S. et al. P2Y12 expression and function in alternatively activated human microglia. Neurol. Neuroimmunol. Neuroinflamm. 2, e80 (2015). (PMID: 258218424370387)
Walker, D. G. et al. Patterns of expression of purinergic receptor P2RY12, a putative marker for non-activated microglia, in aged and Alzheimer’s disease brains. Int. J. Mol. Sci. 21, 678 (2020). (PMID: 7014248)
Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019). (PMID: 3104269731042697)
Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 113, E1738–E1746 (2016). (PMID: 26884166)
Satoh, J. I. et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology 36, 39–49 (2016). (PMID: 26250788)
Becker-Herman, S., Arie, G., Medvedovsky, H., Kerem, A. & Shachar, I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol. Biol. Cell 16, 5061–5069 (2005). (PMID: 161075601266406)
Stumptner-Cuvelette, P. & Benaroch, P. Multiple roles of the invariant chain in MHC class II function. Biochim. Biophys. Acta 1542, 1–13 (2002). (PMID: 11853874)
Bryan, K. J. et al. Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol. Neurodegener. 3, 13 (2008). (PMID: 187862682565661)
Linehan, S. A., Martinez-Pomares, L. & Gordon, S. Mannose receptor and scavenger receptor: two macrophage pattern recognition receptors with diverse functions in tissue homeostasis and host defense. Biol. Pathol. Innate Immun. Mech. 479, 1–14 (2000).
Faraco, G., Park, L., Anrather, J. & Iadecola, C. Brain perivascular macrophages: characterization and functional roles in health and disease. J. Mol. Med. 95, 1143–1152 (2017). (PMID: 287820845812456)
Holder, G. E. et al. Expression of the mannose receptor CD206 in HIV and SIV encephalitis: a phenotypic switch of brain perivascular macrophages with virus infection. J. Neuroimmune Pharmacol. 9, 716–726 (2014). (PMID: 251463764364002)
Galea, I. et al. Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 49, 375–384 (2005). (PMID: 15538754)
Anania, J. C., Chenoweth, A. M., Wines, B. D. & MarkHogarth, P. The human FcγRII (CD32) family of leukocyte FCR in health and disease. Front. Immunol. 10, 1–17 (2019).
Peress, N. S., Fleit, H. B., Perillo, E., Kuljis, R. & Pezzullo, C. Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J. Neuroimmunol. 48, 71–79 (1993). (PMID: 8227309)
Etzerodt, A. & Moestrup, S. K. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid. Redox Signal. 18, 2352–2363 (2013). (PMID: 229008853638564)
Fabriek, B. O. et al. CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51, 297–305 (2005). (PMID: 15846794)
Kim, W. K. et al. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am. J. Pathol. 168, 822–834 (2006). (PMID: 165078981606539)
Pey, P., Pearce, R. K., Kalaitzakis, M. E., Griffin, W. S. T. & Gentleman, S. M. Phenotypic profile of alternative activation marker CD163 is different in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. Commun. 2, 21 (2014). (PMID: 245284863940003)
Roberts, E. S., Masliah, E. & Fox, H. S. CD163 identifies a unique population of ramified microglia in HIV encephalitis (HIVE). J. Neuropathol. Exp. Neurol. 63, 1255–1264 (2004). (PMID: 15624762)
Borda, J. T. et al. CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood-brain barrier. Am. J. Pathol. 172, 725–737 (2008). (PMID: 182767792258269)
Lopes, K. O., Sparks, D. L. & Streit, W. J. Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia 56, 1048–1060 (2008). (PMID: 18442088)
Streit, W. J., Braak, H., Xue, Q. S. & Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 118, 475–485 (2009). (PMID: 195137312737117)
Singh-Bains, M. K. et al. Altered microglia and neurovasculature in the Alzheimer’s disease cerebellum. Neurobiol. Dis. 132, 104589 (2019). (PMID: 31454549)
Brettschneider, J. et al. Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol. 123, 395–407 (2012). (PMID: 222100833595560)
Hopperton, K. E. K., Mohammad, D., Trépanier, M. O. M., Giuliano, V. & Bazinet, R. P. R. Markers of microglia in postmortem brain samples from patients with Alzheimer’s Disease: a systematic review. Mol. Psychiatry https://doi.org/10.1038/mp.2017.246 (2017). (PMID: 10.1038/mp.2017.246292300215794890)
Walker, D. G. & Lue, L.-F.F. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers. Res. Ther. 7, 56 (2015). (PMID: 262861454543480)
McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 79, 195–200 (1987). (PMID: 3670729)
Gehrmann, J., Banati, R. B. & Kreutzberg, G. W. Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J. Neuroimmunol. 48, 189–198 (1993). (PMID: 8227316)
Streit, W. J., Xue, Q.-S., Tischer, J. & Bechmann, I. Microglial pathology. . Acta Neuropathol. Commun. 2, 142 (2014). (PMID: 252573194180960)
Stence, N., Waite, M. & Dailey, M. E. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33, 256–266 (2001). (PMID: 11241743)
Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010). (PMID: 208879544008496)
Sierra, A., Abiega, O., Shahraz, A. & Neumann, H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front. Cell. Neurosci. 7, 1–22 (2013).
Peri, F. & Nüsslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133, 916–927 (2008). (PMID: 18510934)
Bachstetter, A. D. et al. Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol. Commun. 3, 1–16 (2015).
Streit, W. J. & Xue, Q. S. Life and death of microglia. J. Neuroimmune Pharmacol. 4, 371–379 (2009). (PMID: 19680817)
Bachstetter, A. D. et al. Rod-shaped microglia morphology is associated with aging in 2 human autopsy series. Neurobiol. Aging 52, 98–105 (2017). (PMID: 281310165359029)
Taylor, S. E., Morganti-Kossmann, C., Lifshitz, J. & Ziebell, J. M. Rod microglia: a morphological definition. PLoS ONE 9, e97096 (2014). (PMID: 248308074022629)
Ziebell, J. M., Taylor, S. E., Cao, T., Harrison, J. L. & Lifshitz, J. Rod microglia: Elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J. Neuroinflammation 9, 1 (2012).
Coles, J. A., Myburgh, E., Brewer, J. M. & McMenamin, P. G. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog. Neurobiol. 156, 107–148 (2017). (PMID: 28552391)
Kida, S., Steart, P. V., Zhang, E. T. & Weller, R. O. Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol. 85, 646–652 (1993). (PMID: 8337943)
Mato, M. et al. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex. Proc. Natl. Acad. Sci. 93, 3269–3274 (2002).
Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380-395.e6 (2018). (PMID: 29426702)
Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011). (PMID: 21952260)
Mathys, H. et al. Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution. Cell Rep. 21, 366–380 (2017). (PMID: 290206245642107)
Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253-271.e6 (2019). (PMID: 30471926)
Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110 (2019). (PMID: 31740814)
Kettenmann, H., Hanisch, U.-K., Noda, M. & Verkhratsky, A. Physiology of microglia. Physiol. Rev. 91, 461–553 (2011). (PMID: 21527731)
Torres-Platas, S. G. et al. Morphometric characterization of microglial phenotypes in human cerebral cortex. J. Neuroinflammation 11, 12 (2014). (PMID: 244478573906907)
Karperien, A., Ahammer, H. & Jelinek, H. F. Quantitating the subtleties of microglial morphology with fractal analysis. Front. Cell. Neurosci. 7, 1–34 (2013).
Streit, W. J., Walter, S. A. & Pennell, N. A. Reactive microgliosis. Prog. Neurobiol. 57, 563–581 (1999). (PMID: 10221782)
Flanary, B. E., Sammons, N. W., Nguyen, C., Walker, D. & Streit, W. J. Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res. 10, 61–74 (2007). (PMID: 17378753)
Graeber, M. B., Streit, W. J. & Kreutzberg, G. W. Identity of ED2-positive perivascular cells in rat brain. J. Neurosci. Res. 22, 103–106 (1989). (PMID: 2926837)
Linehan, S. A., Martínez-Pomares, L., Stahl, P. D. & Gordon, S. Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: in situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J. Exp. Med. 189, 1961–1972 (1999). (PMID: 103771922192961)
Boche, D., Perry, V. H. & Nicoll, J. A. R. Review: Activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol. 39, 3–18 (2013). (PMID: 23252647)
Dudvarski Stankovic, N., Teodorczyk, M., Ploen, R., Zipp, F. & Schmidt, M. H. H. Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 131, 347–363 (2016). (PMID: 26711460)
Lapenna, A., De Palma, M. & Lewis, C. E. Perivascular macrophages in health and disease. Nat. Rev. Immunol. 18, 689–702 (2018). (PMID: 30127389)
Durafourt, B. A. et al. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60, 717–727 (2012). (PMID: 22290798)
Faraco, G. et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J. Clin. Invest. 126, 4674–4689 (2016). (PMID: 278417635127678)
Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–284 (1995). (PMID: 7566337)
Fillenbaum, G. G. et al. Consortium to establish a registry for Alzheimer’s disease (CERAD): the first twenty years. Alzheimers. Dement. 4, 96–109 (2008). (PMID: 186319552808763)
Montine, T. J. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers. Dement. 8, 1–13 (2012). (PMID: 222655873266529)
Waldvogel, H. J., Curtis, M. A., Baer, K., Rees, M. I. & Faull, R. L. M. Immunohistochemical staining of post-mortem adult human brain sections. Nat. Protoc. 1, 2719–2732 (2007).
Murray, H. C. et al. Neurochemical characterization of PSA-NCAM+ cells in the human brain and phenotypic quantification in Alzheimer’s disease entorhinal cortex. Neuroscience 372, 289–303 (2018). (PMID: 29429526)
Kadota, E. et al. Lectin (UEA-1) reaction of capillary endothelium with reference to permeability in autopsied cases of cerebral infarction. Histol. Histopathol. 1, 219–226 (1986). (PMID: 2980116)
Hamid, S. A., Daly, C. & Campbell, S. Visualization of live endothelial cells ex vivo and in vitro. Microvasc. Res. 66, 159–163 (2003). (PMID: 12935774)
Dieriks, B. V. et al. Differential fatty acid-binding protein expression in persistent radial glia in the human and sheep subventricular zone. Dev. Neurosci. 40, 145–161 (2018). (PMID: 29680832)
المشرفين على المادة: 0 (Antigens, CD)
0 (Antigens, Differentiation, Myelomonocytic)
0 (Biomarkers)
0 (CD163 antigen)
0 (FCGR2B protein, human)
0 (HLA-DR Antigens)
0 (MRC1 protein, human)
0 (Membrane Glycoproteins)
0 (Receptors, Cell Surface)
0 (Receptors, IgG)
0 (Receptors, Immunologic)
9013-31-4 (Apoferritins)
تواريخ الأحداث: Date Created: 20200718 Date Completed: 20210107 Latest Revision: 20210716
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7366669
DOI: 10.1038/s41598-020-68086-z
PMID: 32678124
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-68086-z