دورية أكاديمية

Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters.

التفاصيل البيبلوغرافية
العنوان: Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters.
المؤلفون: Umkehrer C; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Holstein F; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Formenti L; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Jude J; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Froussios K; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Neumann T; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Cronin SM; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Haas L; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Lipp JJ; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.; Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria., Burkard TR; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Fellner M; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria., Wiesner T; Department of Dermatology, Medical University of Vienna, Vienna, Austria., Zuber J; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria., Obenauf AC; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria. anna.obenauf@imp.ac.at.
المصدر: Nature biotechnology [Nat Biotechnol] 2021 Feb; Vol. 39 (2), pp. 174-178. Date of Electronic Publication: 2020 Jul 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature America Publishing Country of Publication: United States NLM ID: 9604648 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1696 (Electronic) Linking ISSN: 10870156 NLM ISO Abbreviation: Nat Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature America Publishing
Original Publication: New York, NY : Nature Pub. Co., [1996-
مواضيع طبية MeSH: Cell Separation* , Genes, Reporter*, CRISPR-Cas Systems/*genetics , Clone Cells/*metabolism, Animals ; Cell Line ; Female ; Humans ; Melanoma/pathology ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Protein Kinase Inhibitors/pharmacology ; raf Kinases/antagonists & inhibitors ; Mice
مستخلص: We developed a functional lineage tracing tool termed CaTCH (CRISPRa tracing of clones in heterogeneous cell populations). CaTCH combines precise clonal tracing of millions of cells with the ability to retrospectively isolate founding clones alive before and during selection, allowing functional experiments. Using CaTCH, we captured rare clones representing as little as 0.001% of a population and investigated the emergence of resistance to targeted melanoma therapy in vivo.
References: Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001). (PMID: 11689955)
Mojtahedi, M. et al. Cell fate decision as high-dimensional critical state transition. PLoS Biol. 14, e2000640 (2016). (PMID: 280273085189937)
Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011). (PMID: 21663791)
Shakiba, N. et al. Cell competition during reprogramming gives rise to dominant clones. Science 364, eaan0925 (2019). (PMID: 30898844)
Biddy, B. A. et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature 564, 219–224 (2018). (PMID: 305188576635140)
Yamanaka, S. Elite and stochastic models for induced pluripotent stem cell generation. Nature 460, 49–52 (2009). (PMID: 19571877)
Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nat. Rev. Cancer 15, 473–483 (2015). (PMID: 26156638)
Ramos, P. & Bentires-Alj, M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34, 3617–3626 (2015). (PMID: 25263438)
McGranahan, N. & Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015). (PMID: 25584892)
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016). (PMID: 271244524944528)
Kebschull, J. M. & Zador, A. M. Cellular barcoding: lineage tracing, screening and beyond. Nat. Methods 15, 871–879 (2018). (PMID: 30377352)
Bhang, H. C. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015). (PMID: 25849130)
Hata, A. N. et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 22, 262–269 (2016). (PMID: 268281954900892)
Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016). (PMID: 272140484927356)
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). (PMID: 253079324253859)
Al’Khafaji, A. M., Deatherage, D. & Brock, A. Control of lineage-specific gene expression by functionalized gRNA barcodes. ACS Synth. Biol. 7, 2468–2474 (2018). (PMID: 301699616661167)
Meeth, K., Wang, J. X., Micevic, G., Damsky, W. & Bosenberg, M. W. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res. 29, 590–597 (2016). (PMID: 272877235331933)
Shi, H. et al. Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov. 4, 80–93 (2014). (PMID: 24265155)
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010). (PMID: 203713462851638)
Ravindran Menon, D. et al. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 34, 4448–4459 (2015). (PMID: 25417704)
Trumpp, A. & Wiestler, O. D. Mechanisms of disease: cancer stem cells—targeting the evil twin. Nat. Clin. Pract. Oncol. 5, 337–347 (2008). (PMID: 18431377)
Friedman, R. Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget 7, 11746–11755 (2016). (PMID: 269095964914245)
Hobbs, G. A. et al. Atypical KRAS G12R mutant is impaired in PI3K signaling and macropinocytosis in pancreatic cancer. Cancer Discov. 10, 104–123 (2020). (PMID: 31649109)
Zafra, M. P. et al. An in vivo KRAS allelic series reveals distinct phenotypes of common oncogenic variants. Preprint at https://www.biorxiv.org/content/10.1101/847509v1 (2019).
Rebbeck, C. et al. SmartCodes: functionalized barcodes that enable targeted retrieval of clonal lineages from a heterogeneous population. Preprint at https://www.biorxiv.org/content/10.1101/352617v1.full (2018).
Akimov, Y., Bulanova, D., Abyzova, M., Wennerberg, K. & Aittokallio, T. DNA barcode-guided lentiviral CRISPRa tool to trace and isolate individual clonal lineages in heterogeneous cancer cell populations. Preprint at https://www.biorxiv.org/content/10.1101/622506v1 (2019).
Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855.e19 (2018). (PMID: 30017245)
Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017). (PMID: 286074845542814)
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012). (PMID: 222586093367003)
Calderwood, S. K. Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discov. Med. 15, 188–194 (2013). (PMID: 235450474083486)
Smith, M. P. et al. Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29, 270–284 (2016). (PMID: 269778794796027)
Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009). (PMID: 193048782682512)
Bodenhofer, U., Kothmeier, A. & Hochreiter, S. APCluster: an R package for affinity propagation clustering. Bioinformatics 27, 2463–2464 (2011). (PMID: 21737437)
Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters with minimized background expression. BMC Biotechnol. 10, 81 (2010). (PMID: 211060523002914)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 23104886)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 24227677)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 255162814302049)
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016). (PMID: 270799754987876)
Marini, F. & Binder, H. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components. BMC Bioinf. 20, 331 (2019).
Krämer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in Ingenuity pathway analysis. Bioinformatics 30, 523–530 (2014). (PMID: 24336805)
Babicki, S. et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153 (2016). (PMID: 271902364987948)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 194511682705234)
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011). (PMID: 219036273198575)
Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012). (PMID: 223007663290792)
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). (PMID: 216535223137218)
Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30, 2843–2851 (2014). (PMID: 249742024271055)
Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164–e164 (2010). (PMID: 206016852938201)
Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756 (2018). (PMID: 303411626211645)
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 2017, 1–16 (2017).
Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009). (PMID: 196178893159387)
Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79–83 (2011). (PMID: 21131983)
المشرفين على المادة: 0 (Protein Kinase Inhibitors)
EC 2.7.11.1 (raf Kinases)
EC 2.7.12.2 (Mitogen-Activated Protein Kinase Kinases)
تواريخ الأحداث: Date Created: 20200729 Date Completed: 20210309 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1038/s41587-020-0614-0
PMID: 32719478
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1696
DOI:10.1038/s41587-020-0614-0