دورية أكاديمية

Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection.

التفاصيل البيبلوغرافية
العنوان: Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection.
المؤلفون: Giansanti P; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands.; Technical University, Munich, Germany., Strating JRPM; Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.; Viroclinics Biosciences, Rotterdam, The Netherlands., Defourny KAY; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands., Cesonyte I; Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands., Bottino AMS; Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands., Post H; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands., Viktorova EG; Department of Veterinary Medicine, University of Maryland and VA-MD College of Veterinary Medicine, College Park, MD, 20742, USA., Ho VQT; Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.; Amsterdam University Medical Center, Amsterdam, The Netherlands., Langereis MA; Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.; MSD Animal Health, Boxmeer, The Netherlands., Belov GA; Department of Veterinary Medicine, University of Maryland and VA-MD College of Veterinary Medicine, College Park, MD, 20742, USA., Nolte-'t Hoen ENM; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands., Heck AJR; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. a.j.r.heck@uu.nl.; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands. a.j.r.heck@uu.nl., van Kuppeveld FJM; Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands. f.j.m.vankuppeveld@uu.nl.
المصدر: Nature communications [Nat Commun] 2020 Aug 28; Vol. 11 (1), pp. 4332. Date of Electronic Publication: 2020 Aug 28.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Coxsackievirus Infections/*metabolism , Host-Pathogen Interactions/*physiology , Proteome/*analysis, Animals ; Autophagy ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Cell Line ; Cell Survival ; Enterovirus/physiology ; Enterovirus B, Human/physiology ; Gene Knockout Techniques ; HeLa Cells ; Humans ; Mechanistic Target of Rapamycin Complex 1 ; Phosphorylation ; Signal Transduction ; Viral Proteins/metabolism
مستخلص: The group of enteroviruses contains many important pathogens for humans, including poliovirus, coxsackievirus, rhinovirus, as well as newly emerging global health threats such as EV-A71 and EV-D68. Here, we describe an unbiased, system-wide and time-resolved analysis of the proteome and phosphoproteome of human cells infected with coxsackievirus B3. Of the ~3,200 proteins quantified throughout the time course, a large amount (~25%) shows a significant change, with the majority being downregulated. We find ~85% of the detected phosphosites to be significantly regulated, implying that most changes occur at the post-translational level. Kinase-motif analysis reveals temporal activation patterns of certain protein kinases, with several CDKs/MAPKs immediately active upon the infection, and basophilic kinases, ATM, and ATR engaging later. Through bioinformatics analysis and dedicated experiments, we identify mTORC1 signalling as a major regulation network during enterovirus infection. We demonstrate that inhibition of mTORC1 activates TFEB, which increases expression of lysosomal and autophagosomal genes, and that TFEB activation facilitates the release of virions in extracellular vesicles via secretory autophagy. Our study provides a rich framework for a system-level understanding of enterovirus-induced perturbations at the protein and signalling pathway levels, forming a base for the development of pharmacological inhibitors to treat enterovirus infections.
References: Baggen, J., Jan Thibaut, H., Strating, J. R. P. M. & van Kuppeveld, F. J. M. The life cycle of non-polio enteroviruses and how to target it. Nat. Rev. Microbiol. 16, 368–381 (2018). (PMID: 29626210)
Lloyd, R. E. Enterovirus control of translation and RNA granule stress responses. Viruses 8, 93 (2016). (PMID: 270436124848588)
Flather, D. & Semler, B. L. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front. Microbiol. 6, 594 (2015). (PMID: 261508054471892)
Bird, S. W. & Kirkegaard, K. Escape of non-enveloped virus from intact cells. Virology 479–480, 444–449 (2015). (PMID: 25890822)
Lai, J. K., Sam, I. C. & Chan, Y. F. The autophagic machinery in enterovirus infection. Viruses 8, 32 (2016). (PMID: 4776187)
Mutsafi, Y. & Altan-Bonnet, N. Enterovirus transmission by secretory autophagy. Viruses 10, 139 (2018). (PMID: 5869532)
Domsgen, E. et al. An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets. Sci. Rep. 6, 39378 (2016). (PMID: 280007225175199)
Jin, J. et al. Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells. BMC Genom. 18, 933 (2017).
Lemeer, S. & Heck, A. J. The phosphoproteomics data explosion. Curr. Opin. Chem. Biol. 13, 414–420 (2009). (PMID: 19620020)
Altelaar, A. F., Munoz, J. & Heck, A. J. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Genet. 14, 35–48 (2013). (PMID: 23207911)
Jean Beltran, P. M., Federspiel, J. D., Sheng, X. & Cristea, I. M. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol. Syst. Biol. 13, 922 (2017). (PMID: 283480675371729)
Meyuhas, O. & Kahan, T. The race to decipher the top secrets of TOP mRNAs. Biochim. Biophys. Acta 1849, 801–811 (2015). (PMID: 25234618)
Post, H. et al. Robust, sensitive, and automated phosphopeptide enrichment optimized for low sample amounts applied to primary hippocampal neurons. J. Proteome Res. 16, 728–737 (2017). (PMID: 28107008)
Schwartz, D. & Gygi, S. P. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets. Nat. Biotechnol. 23, 1391–1398 (2005). (PMID: 16273072)
Horn, H. et al. KinomeXplorer: an integrated platform for kinome biology studies. Nat. Methods 11, 603–604 (2014). (PMID: 24874572)
Raaijmakers, L. M. et al. PhosphoPath: visualization of phosphosite-centric dynamics in temporal molecular networks. J. Proteome Res. 14, 4332–4341 (2015). (PMID: 26317507)
Si, X. et al. Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J. Virol. 79, 13875–13881 (2005). (PMID: 162543231280244)
Esfandiarei, M. & McManus, B. M. Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol. Mech. Dis. 3, 127–155 (2008).
Chang, H. et al. The PI3K/Akt/mTOR pathway is involved in CVB3-induced autophagy of HeLa cells. Int. J. Mol. Med. 40, 182–192 (2017). (PMID: 285603855466389)
Laplante, M. & Sabatini, D. M. mTOR signaling at a glance. J. Cell Sci. 122, 3589–3594 (2009). (PMID: 198123042758797)
Kim, J. & Guan, K. L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 21, 63–71 (2019). (PMID: 30602761)
Oshiro, N. et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem. 282, 20329–20339 (2007). (PMID: 175178833199301)
Wang, L., Harris, T. E. & Lawrence, J. C. J. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J. Biol. Chem. 283, 15619–15627 (2008). (PMID: 183722482414301)
Foster, K. G. et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J. Biol. Chem. 285, 80–94 (2010). (PMID: 19864431)
Wu, X. N. et al. Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286, 31501–31511 (2011). (PMID: 217577133173133)
He, C. L. et al. Pyruvate kinase M2 activates mTORC1 by phosphorylating AKT1S1. Sci. Rep. 6, 21524 (2016). (PMID: 268761544753445)
Pyr Dit Ruys, S. et al. Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase. Biochem. J. 442, 681–692 (2012). (PMID: 222169033286862)
Tavares, C. D. et al. Calcium/calmodulin stimulates the autophosphorylation of elongation factor 2 kinase on Thr-348 and Ser-500 to regulate its activity and calcium dependence. Biochemistry 51, 2232–2245 (2012). (PMID: 223298313401519)
Redpath, N. T., Price, N. T., Severinov, K. V. & Proud, C. G. Regulation of elongation factor-2 by multisite phosphorylation. Eur. J. Biochem. 213, 689–699 (1993). (PMID: 8386634)
Bellacosa, A. et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17, 313–325 (1998). (PMID: 9690513)
Guo, H. et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules. Oncogene 33, 3463–3472 (2014). (PMID: 23912456)
Cai, S. L. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 173, 279–289 (2006). (PMID: 166361472063818)
Kovacina, K. S. et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189–10194 (2003). (PMID: 12524439)
Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013). (PMID: 23415227)
Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).
Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007). (PMID: 17386266)
Langlais, P., Yi, Z. & Mandarino, L. J. The identification of raptor as a substrate for p44/42 MAPK. Endocrinology 152, 1264–1273 (2011). (PMID: 213250483060629)
Dalby, K. N., Morrice, N., Caudwell, F. B., Avruch, J. & Cohen, P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J. Biol. Chem. 273, 1496–1505 (1998). (PMID: 9430688)
Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008). (PMID: 184399002674027)
Choo, A. Y. & Blenis, J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 8, 567–572 (2009). (PMID: 19197153)
Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A. & Sonenberg, N. Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc. Natl Acad. Sci. U. S. A. 93, 5578–5583 (1996). (PMID: 864361839289)
Staring, J. et al. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 541, 412–416 (2017). (PMID: 28077878)
Jia, J. et al. Galectins control mTOR in response to endomembrane damage. Mol. Cell 70, 120–135 (2018). (PMID: 296250335911935)
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009). (PMID: 19556463)
Vega-Rubin-de-Celis, S., Pena-Llopis, S., Konda, M. & Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy 13, 464–472 (2017). (PMID: 280553005361595)
Beretta, L., Svitkin, Y. V. & Sonenberg, N. Rapamycin stimulates viral protein synthesis and augments the shutoff of host protein synthesis upon picornavirus infection. J. Virol. 70, 8993–8996 (1996). (PMID: 8971030190998)
Sin, J., McIntyre, L., Stotland, A., Feuer, R. & Gottlieb, R. A. Coxsackievirus B escapes the infected cell in ejected mitophagosomes. J. Virol. 91, e01347–17 (2017). (PMID: 289787025709598)
Robinson, S. M. et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog. 10, e1004045 (2014). (PMID: 247227733983045)
Chen, Y. H. et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015). (PMID: 256797586704014)
Bird, S. W., Maynard, N. D., Covert, M. W. & Kirkegaard, K. Nonlytic viral spread enhanced by autophagy components. Proc. Natl Acad. Sci. U. S. A. 111, 13081–13086 (2014). (PMID: 251571424246951)
Lanke, K., Krenn, B. M., Melchers, W. J., Seipelt, J. & van Kuppeveld, F. J. PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells. J. Gen. Virol. 88, 1206–1217 (2007). (PMID: 17374764)
Giansanti, P., Tsiatsiani, L., Low, T. Y. & Heck, A. J. R. Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat. Protoc. 11, 993–1006 (2016). (PMID: 27123950)
Cristobal, A. et al. In-house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis. Analyst 137, 3541–3548 (2012). (PMID: 22728655)
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 19029910)
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014).
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). (PMID: 27348712)
R Development Core Team, R. F. F. S. C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna Austria, 2008).
Wagih, O., Sugiyama, N., Ishihama, Y. & Beltrao, P. Uncovering phosphorylation-based specificities through functional interaction networks. Mol. Cell. Proteom. 15, 236–245 (2016).
Linding, R. et al. Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426 (2007). (PMID: 175704792692296)
Hornbeck, P. V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012). (PMID: 22135298)
Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45, D369–D379 (2017). (PMID: 27980099)
Kelder, T. et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res. 40, D1301–D1307 (2012). (PMID: 22096230)
Vizcaino, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013). (PMID: 23203882)
معلومات مُعتمدة: R01 AI125561 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Basic Helix-Loop-Helix Leucine Zipper Transcription Factors)
0 (Proteome)
0 (TFEB protein, human)
0 (Viral Proteins)
EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
تواريخ الأحداث: Date Created: 20200830 Date Completed: 20200917 Latest Revision: 20210828
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC7455705
DOI: 10.1038/s41467-020-18168-3
PMID: 32859902
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-18168-3