دورية أكاديمية

Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming.

التفاصيل البيبلوغرافية
العنوان: Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming.
المؤلفون: Dudgeon D; Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China., Ng LCY; Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China., Tsang TPN; Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
المصدر: Global change biology [Glob Chang Biol] 2020 Nov; Vol. 26 (11), pp. 6399-6412. Date of Electronic Publication: 2020 Sep 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Pub Country of Publication: England NLM ID: 9888746 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2486 (Electronic) Linking ISSN: 13541013 NLM ISO Abbreviation: Glob Chang Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Blackwell Pub.
Original Publication: Oxford, UK : Blackwell Science, 1995-
مواضيع طبية MeSH: Ephemeroptera* , Rivers*, Animals ; Climate Change ; Forests ; Humans ; Insecta
مستخلص: The effects of climatic warming on tropical streams have received little attention, and field studies of such changes are generally lacking. Drifting insects from a Hong Kong forest stream were sampled for 36 months between 2013 and 2016, and compared with samples collected using identical methods in 1983-84. Mean air temperatures rose by ~0.5°C (0.17°C per decade) over this period. The stream drained an uninhabited protected area, so no climate-change effects were confounded by anthropogenic disturbance. In total, 105 taxa and >77,000 individuals were collected. Richness of samples in the historic and contemporary datasets did not differ, but true diversity of drifting insects was highest in 1983-84, and declined between 2013-14 and 2015-16. There was considerable disparity in assemblage composition between 1983-84 and 2013-16, and smaller between-year changes in the contemporary dataset. Nine indicator species of the historic dataset were identified. Most were mayflies, particularly Baetidae, which were greatly reduced in relative abundance in 2013-16. Diptera became more numerous, and tanypodine chironomids were the sole contemporary indicator taxon. Relative abundance of eight of 19 drifting species (comprising 60% of total insects) was lower in 2013-16, when the dominant baetid mayfly during 1983-84 had declined by almost 90%; only one of the 19 species occurred at higher abundance. Eight species were affected by seasonal temperature variability, but these responses were not correlated with any tendency to exhibit long-term changes in abundance. Substantial shifts in composition, including declines in mayfly relative abundance and assemblage diversity, occurred after three decades of warming, despite the broad annual range of stream temperatures (~16°C) in Hong Kong. This contradicts the well-known prediction that organisms from variable climates have evolved wider thermal tolerances that reflect prevailing environmental conditions. The observed compositional reorganization indicates that variability, rather than stability, may be typical of undisturbed tropical stream communities.
(© 2020 John Wiley & Sons Ltd.)
References: Allan, J. D., & Russek, E. (1985). The quantification of stream drift. Canadian Journal of Fisheries and Aquatic Sciences, 42(2), 210-215. https://doi.org/10.1139/f85-028.
Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62(1), 245-253. https://doi.org/10.1111/j.1541-0420.2005.00440.x.
Baranov, V., Jourdan, J., Pilotto, F., Wagner, R., & Haase, P. (2020). Complex and non-linear climate-driven changes in freshwater insect communities over 42 years. Conservation Biology. https://doi.org/10.1111/cobi.13477.
Benson, L. J., & Pearson, R. G. (1987). Drift and upstream movement in Yuccabine Creek, an Australian tropical stream. Hydrobiologia, 153, 225-233. https://doi.org/10.1007/BF00007209.
Blowes, S. A., Supp, S. R., Antão, L. H., Bates, A., Bruelheide, H., Chase, J. M., … Dornelas, M. (2019). The geography of biodiversity change in marine and terrestrial assemblages. Science, 366(6463), 339-345. https://doi.org/10.1126/science.aaw1620.
Brewin, P. A., & Ormerod, S. J. (1994). Macroinvertebrate drift in streams of the Nepalese Himalaya. Freshwater Biology, 32(3), 573-583. https://doi.org/10.1111/j.1365-2427.1994.tb01148.x.
Brittain, J. A., & Eikeland, T. J. (1988). Invertebrate drift - A review. Hydrobiologia, 166(1), 77-93. https://doi.org/10.1007/BF00017485.
Chessman, B. C. (2009). Climatic changes and 13-year trends in stream macroinvertebrate assemblages in New South Wales, Australia. Global Change Biology, 15(11), 2791-2802. https://doi.org/10.1111/j.1365-2486.2008.01840.x.
Chown, S. L., Duffy, G. A., & Sørensen, J. (2015). Upper thermal tolerance in aquatic insects. Current Opinion in Insect Science, 11(10), 78-83. https://doi.org/10.1016/j.cois.2015.09.012.
De Cáceres, M., & Jansen, F. (2016). indicspecies: Relationship between species and groups of sites. R package version 1.7.6. Retrieved from https://CRAN.R-project.org/package=indicspecies.
De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: Indices and statistical inference. Ecology, 90(12), 3566-3574. https://doi.org/10.1890/08-1823.1.
De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674-1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x.
Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32(3), 1455-1462. https://doi.org/10.1016/S0043-1354(97)00370-9.
Dudgeon, D. (1983). An investigation of the drift of aquatic insects in Tai Po Kau Forest Stream, New Territories, Hong Kong. Archiv für Hydrobiologie, 96(4), 434-447.
Dudgeon, D. (1988). The influence of riparian vegetation on macroinvertebrate community structure in four Hong Kong streams. Journal of Zoology, London, 216(4), 609-627. https://doi.org/10.1111/j.1469-7998.1988.tb02461.x.
Dudgeon, D. (1989). Life cycle, production, microdistribution and diet of the damselfly Euphaea decorata (Odonata: Euphaeidae) in a Hong Kong forest stream. Journal of Zoology, London, 217(1), 57-72. https://doi.org/10.1111/j.1469-7998.1989.tb02474.x.
Dudgeon, D. (1990). Seasonal dynamics of drift in a Hong Kong stream. Journal of Zoology, London, 222(2), 187-196. https://doi.org/10.1111/j.1469-7998.1990.tb05671.x.
Dudgeon, D. (1996). Life history, secondary production and microdistribution of Stenopsyche angustata (Trichoptera: Stenopsychidae) in a tropical forest stream. Journal of Zoology, London, 238(4), 679-691. https://doi.org/10.1111/j.1469-7998.1996.tb05422.x.
Dudgeon, D. (1999). The population dynamics of three species of Calamoceratidae (Trichoptera) in a tropical forest stream. In H. Malicky & P. Chantaramongkol (Eds.), Proceedings of the 9th international symposium on Trichoptera (pp. 83-91). Chiang Mai, Thailand: Faculty of Science, University of Chiang Mai.
Dudgeon, D. (2006). The impacts of human disturbance on stream benthic invertebrates and their drift in North Sulawesi, Indonesia. Freshwater Biology, 51(9), 1710-1729. https://doi.org/10.1111/j.1365-2427.2006.01596.x.
Dudgeon, D., & Corlett, R. T. (2011). The ecology and biodiversity of Hong Kong (2nd ed.). Hong Kong: Agriculture Fisheries and Conservation Department, Government of Hong Kong SAR, Lions Nature Education Foundation, & Cosmos Books Ltd.
Durance, I., & Ormerod, S. J. (2007). Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology, 13(5), 942-957. https://doi.org/10.1111/j.1365-2486.2007.01340.x.
Durance, I., & Ormerod, S. J. (2008). Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshwater Biology, 54(2), 388-405. https://doi.org/10.1111/j.1365-2427.2008.02112.x.
Durance, I., Vaughn, I. P., & Ormerod, S. J. (2009). Evaluating climatic effects on aquatic invertebrates, phase II: Review, comparisons between regions and methodological considerations. Bristol, UK: Environment Agency, Report SC070047/R1. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/291642/scho1209brjt-e-e.pdf.
Giam, X., Koh, L. P., Tan, H. H., Miettinen, J., Tan, H. T. W., & Ng, P. K. L. (2012). Global extinctions of freshwater fishes follow peatland conversion in Sundaland. Frontiers in Ecology and the Environment, 10(9), 465-470. https://doi.org/10.1890/110182.
Glazaczow, A., Orwin, D., & Bogdziewicz, M. (2016). Increased temperature delays the late-season phenology of multivoltine insect. Scientific Reports, 6, 38022. https://doi.org/10.1038/srep38022.
Gossiaux, A., Jabiol, J., Poupin, P., Chauvet, E., & Guérold, F. (2019). Seasonal variations overwhelm temperature effects on microbial processes in headwater streams: Insights from a temperate thermal spring. Aquatic Sciences, 81, 30. https://doi.org/10.1007/s00027-019-0627-2.
Gotelli, N. J., & McCabe, D. J. (2002). Species co-occurrence: A meta-analysis of J.M. Diamond's assembly rules model. Ecology, 83(8), 2091-2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2.
Gray, J. S. (2000). The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology, 250(1-2), 23-49. https://doi.org/10.1016/S0022-0981(00)00178-7.
Gurevitch, J., Morrow, L. L., Wallace, A., & Walsh, J. S. (1992). A meta-analysis of field experiments on competition. American Naturalist, 140(4), 539-572. https://doi.org/10.1086/285428.
Haase, P., Pilotto, F., Li, F., Sundermann, A., Lorenz, A. W., Tonkin, J. D., & Stoll, S. (2019). Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Science of the Total Environment, 658, 1531-1538. https://doi.org/10.1016/j.scitotenv.2018.12.234.
Heino, J., Virkkala, R., & Toivonen, H. (2009). Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biological Reviews, 84(1), 39-54. https://doi.org/10.1111/j.1469-185X.2008.00060.x.
Ho, B. S. K., & Dudgeon, D. (2016). Are high densities of fishes and shrimp associated with top-down control of tropical benthic communities? A test in three Hong Kong streams. Freshwater Biology, 61(1), 57-68. https://doi.org/10.1111/fwb.12678.
Hong Kong Observatory. (2019). Climate change in Hong Kong. Hong Kong: Hong Kong Observatory, The Government of the Hong Kong Special Administrative Region. Retrieved from https://www.hko.gov.hk/climate_change/climate_change_hk_e.htm.
Hynes, J. D. (1975). Downstream drift of invertebrates in a river in southern Ghana. Freshwater Biology, 5(6), 515-532. https://doi.org/10.1111/j.1365-2427.1975.tb00153.x.
Janzen, D. H. (1967). Why mountain passes are higher in the tropics. American Naturalist, 101(919), 233-249. https://doi.org/10.1086/282487.
Janzen, D. H., & Hallwachs, W. (2019). Perspective: Where might be many tropical insects? Biological Conservation, 223(5), 102-108. https://doi.org/10.1016/j.biocon.2019.02.030.
Jourdan, J., O'Hara, R. B., Bottarin, R., Huttunen, K.-L., Kuemmerlen, M., Monteith, D., … Haase, P. (2018). Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Science of the Total Environment, 621, 588-599. https://doi.org/10.1016/j.scitotenv.2017.11.242.
Kaller, M. D., & Hudson, J. D. (2011). Phenological partitioning among drifting insect genera within families in a subtropical, coastal plain stream (Louisiana, USA). Journal of Freshwater Ecology, 25(4), 607-615. https://doi.org/10.1080/02705060.2010.9664410.
Knouft, J. H., & Ficklin, D. L. (2017). The potential impacts of climate change on biodiversity in flowing freshwater systems. Annual Review of Ecology, Evolution, and Systematics, 48, 111-133. https://doi.org/10.1146/annurev-ecolsys-110316-022803.
Larsen, S., Chase, J. M., Durance, I., & Ormerod, S. J. (2018). Lifting the veil: Richness measurements fail to detect systematic biodiversity change over three decades. Ecology, 99(6), 1316-1326. https://doi.org/10.1002/ecy.2213.
Leung, A. S. L., Li, A. O. Y., & Dudgeon, D. (2012). Scales of spatiotemporal variation in macroinvertebrate assemblage structure in monsoonal streams: The importance of season. Freshwater Biology, 57(1), 218-231. https://doi.org/10.1111/j.1365-2427.2011.02707.x.
Li, A. O. Y., & Dudgeon, D. (2008). Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwater Biology, 53(10), 2011-2025. https://doi.org/10.1111/j.1365-2427.2008.02022.x.
Li, F., Cai, Q., Jiang, W., & Qu, X. (2012). The response of benthic macroinvertebrate communities to climate change: Evidence from subtropical mountain streams in Central China. International Review of Hydrobiology, 97(3), 200-214. https://doi.org/10.1002/iroh.201111489.
Li, R. C. Y., Zhou, W., & Lee, T. C. (2015). Climatological characteristics and observed trends of tropical cyclone-induced rainfall and their influences on long-term rainfall variations in Hong Kong. Monthly Weather Review, 143, 2192-2206. https://doi.org/10.1175/MWR-D-14-00332.1.
Luiza-Andrade, A., Brasil, L. S., Benone, N. L., Shimano, Y., Farias, A. P. J., Montag, L. F., … Juen, L. (2017). Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators, 82(11), 478-483. https://doi.org/10.1016/j.ecolind.2017.07.006.
MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40(4), 510-533. https://doi.org/10.1111/j.1469-185X.1965.tb00815.x.
Nnoli, H., Kyerematen, R., Adu-Acheampong, S., & Hynes, J. D. (2019). Change in aquatic insect abundance: Evidence of climate and land-use change within the Pawmpawm River in Southern Ghana. Cogent Environmental Science, 5, 1594511. https://doi.org/10.1080/23311843.2019.1594511.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., … Wagner, H. (2017). vegan: Community Ecology Package. R package version 2.4-3. Retrieved from https://CRAN.R-project.org/package=vegan.
Pace, G., Bonada, N., & Prat, N. (2013). Long-term effects of climatic-hydrological drivers on macroinvertebrate richness and composition in two Mediterranean streams. Freshwater Biology, 58(7), 1313-1328. https://doi.org/10.1111/fwb.12129.
Pike, N. (2011). Using false discovery rates for multiple comparisons in ecology and evolution. Methods in Ecology and Evolution, 2(3), 278-282. https://doi.org/10.1111/j.2041-210X.2010.00061.x.
Queheillalt, D. M., Cain, J. W., Taylor, D. E., Morrison, M. L., Hoover, S. L., Tuatoo-Bartley, N., … Keough, H. L. (2002). The exclusion of rare species from community-level analyses. Wildlife Society Bulletin, 30(3), 756-759.
R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna, AustriaR Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.
Ramírez, A., & Pringle, C. M. (1998). Invertebrate drift and benthic community dynamics in a lowland neotropical stream, Costa Rica. Hydrobiologia, 386(1), 12-26. https://doi.org/10.1023/A:1003409927131.
Ramírez, A., & Pringle, C. M. (2001). Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape. Freshwater Biology, 46(1), 47-62. https://doi.org/10.1111/j.1365-2427.2001.00636.x.
Roberts, D. W. (2020). Comparison of distance-based and model-based ordinations. Ecology, 101(1), e02908. https://doi.org/10.1002/ecy.2908.
Robinson, C. T., Tockner, K., & Burgherr, P. (2004). Drift benthos relationships in the seasonal colonization dynamics of alpine streams. Archiv für Hydrobiologie, 160(4), 447-470. https://doi.org/10.1127/0003-9136/2004/0160-0447.
Salas, M., & Dudgeon, D. (2002). Laboratory and field studies of mayfly growth in the tropics. Archiv für Hydrobiologie, 153(1), 75-90. https://doi.org/10.1127/archiv-hydrobiol/153/2001/75.
Seibold, S., Gossner, M. M., Simons, N. K., Blüthgen, N., Müller, J., Ambarlı, D., … Weisser, W. W. (2019). Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 574(7780), 671-674. https://doi.org/10.1038/s41586-019-1684-3.
Sgarbi, L. F., & Melo, A. S. (2018). You don't belong here: Explaining the excess of rare species in terms of habitat, space and time. Oikos, 127(4), 497-506. https://doi.org/10.1111/oik.04855.
Shah, A. A., Funk, W. C., & Galambor, C. K. (2017). Thermal acclimation ability differs in temperate and tropical aquatic insects from different elevations. Integrative and Comparative Biology, 57(5), 977-987. https://doi.org/10.1093/icb/icx101.
Shah, A. A., Gill, B. A., Encalada, A. C., Flecker, A. S., Funk, W. C., Guayasamin, J. M., … Ghalambor, C. K. (2017). Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Functional Ecology, 31(11), 2118-2127. https://doi.org/10.1111/1365-2435.12906.
Shearer, K. A., Hayes, J. W., & Stark, J. D. (2002). Temporal and spatial quantification of aquatic invertebrate drift in the Maruia River, South Island, New Zealand. New Zealand Journal of Marine and Freshwater Research, 36(3), 529-536. https://doi.org/10.1080/00288330.2002.9517108.
Stoneburner, D. L., & Smock, L. A. (1979). Seasonal fluctuations of macroinvertebrate drift in a South Carolina Piedmont stream. Hydrobiologia, 63(1), 49-56. https://doi.org/10.1007/BF00021016.
Taniwaki, R. H., Piggott, J. J., Ferraz, S. F. B., & Matthaei, C. D. (2016). Climate change and multiple stressors in small tropical streams. Hydrobiologia, 793(1), 41-53. https://doi.org/10.1007/s10750-016-2907-3.
Vaughan, I. P., & Ormerod, S. J. (2014). Linking interdecadal changes in British river ecosystems to water quality and climate dynamics. Global Change Biology, 20(9), 2725-2740. https://doi.org/10.1111/gcb.12616.
Verberk, W. C. E. P., Durance, I., Vaughan, I. P., & Ormerod, S. J. (2016). Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms. Global Change Biology, 22(5), 1769-1778. https://doi.org/10.1111/gcb.13240.
Warton, D. I., & Hui, F. K. C. (2011). The arcsine is asinine: The analysis of proportions in ecology. Ecology, 92(1), 3-10. https://doi.org/10.1890/10-0340.1.
Yeh, Y.-C., Peres-Neto, P. R., Huang, S.-W., Lai, Y.-C., Tu, C.-Y., Shiah, F.-K., … Hsieh, C.-H. (2015). Determinism of bacterial metacommunity dynamics in the southern East China Sea varies depending on hydrography. Ecography, 38(2), 198-212. https://doi.org/10.1111/ecog.00986.
Yeung, A. C. Y., & Dudgeon, D. (2013). A manipulative study of macroinvertebrate grazers in Hong Kong streams: Do snails compete with insects? Freshwater Biology, 58(11), 2299-2309. https://doi.org/10.1111/fwb.12210.
معلومات مُعتمدة: 16/2012 Environment and Conservation Fund of HKSAR Government; Woo Wheelock Green Fund
فهرسة مساهمة: Keywords: climate change; diversity; drift; global warming; macroinvertebrate; mayfly; river; seasonality
تواريخ الأحداث: Date Created: 20200901 Date Completed: 20210414 Latest Revision: 20210414
رمز التحديث: 20240829
DOI: 10.1111/gcb.15325
PMID: 32866325
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2486
DOI:10.1111/gcb.15325