دورية أكاديمية

New insights into IVIg mechanisms and alternatives in autoimmune and inflammatory diseases.

التفاصيل البيبلوغرافية
العنوان: New insights into IVIg mechanisms and alternatives in autoimmune and inflammatory diseases.
المؤلفون: Norris PAA; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario.; Centre for Innovation, Canadian Blood Services, Ottawa, Ontario.; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada., Kaur G; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario.; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada., Lazarus AH; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario.; Centre for Innovation, Canadian Blood Services, Ottawa, Ontario.; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
المصدر: Current opinion in hematology [Curr Opin Hematol] 2020 Nov; Vol. 27 (6), pp. 392-398.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Review
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams And Wilkins Country of Publication: United States NLM ID: 9430802 Publication Model: Print Cited Medium: Internet ISSN: 1531-7048 (Electronic) Linking ISSN: 10656251 NLM ISO Abbreviation: Curr Opin Hematol Subsets: MEDLINE
أسماء مطبوعة: Publication: Philadelphia Pa : Lippincott Williams And Wilkins
Original Publication: Philadelphia, PA : Current Science, c1993-
مواضيع طبية MeSH: Autoimmune Diseases/*therapy , Immunoglobulins, Intravenous/*pharmacology , Immunoglobulins, Intravenous/*therapeutic use , Inflammation/*therapy, Animals ; Autoimmune Diseases/immunology ; Complement Activation/drug effects ; Histocompatibility Antigens Class I/immunology ; Humans ; Inflammation/immunology ; Receptors, Fc/antagonists & inhibitors ; Receptors, Fc/immunology ; T-Lymphocytes/drug effects ; T-Lymphocytes/immunology
مستخلص: Purpose of Review: Intravenous immunoglobulin (IVIg) is an effective treatment for an increasing number of autoimmune and inflammatory conditions. However, IVIg continues to be limited by problems of potential shortages and cost. A number of mechanisms have been described for IVIg, which have been captured in newly emergent IVIg mimetic and IVIg alternative therapies. This review discusses the recent developments in IVIg mimetics and alternatives.
Recent Findings: Newly emergent IVIg mimetics and alternatives capture major proposed mechanisms of IVIg, including FcγR blockade, FcRn inhibition, complement inhibition, immune complex mimetics and sialylated IgG. Many of these emergent therapies have promising preclinical and clinical trial results.
Summary: Significant research has been undertaken into the mechanism of IVIg in the treatment of autoimmune and inflammatory disease. Understanding the major IVIg mechanisms has allowed for rational development of IVIg mimetics and alternatives for several IVIg-treatable diseases.
References: Imbach P, Barandun S, d’Apuzzo V, et al. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet (London, England) 1981; 1:12281231.
Viala K, Maisonobe T, Stojkovic T, et al. A current view of the diagnosis, clinical variants, response to treatment and prognosis of chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst 2010; 15:5056.
Fehr J, Hofmann V, Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med 1982; 306:12541258.
Siragam V, Brinc D, Crow AR, et al. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest 2005; 115:155160.
Tremblay T, Paré I, Bazin R. Immunoglobulin G dimers and immune complexes are dispensable for the therapeutic efficacy of intravenous immune globulin in murine immune thrombocytopenia. Transfusion 2013; 53:261269.
Song S, Crow AR, Siragam V, et al. Monoclonal antibodies that mimic the action of anti-D in the amelioration of murine ITP act by a mechanism distinct from that of IVIg. Blood 2005; 105:15461548.
Clarkson SB, Bussel JB, Kimberly RP, et al. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc gamma-receptor antibody. N Engl J Med 1986; 314:12361239.
Bussel JB, Patel V, Dunbar C, et al. GMA161 treatment of refractory ITP: efficacy of Fcγ-RIII blockade. Blood 2006; 108:1074LP – 1074. Abstract.
Nakar CT, Bussel JB. 3G8 and GMA161, anti FcγRIII inhibitory monoclonal antibodies in the treatment of chronic refractory ITP. (Summary of 2 pilot studies). Blood 2009; 114:2404LP – 2404. Abstract.
Flaherty MM, MacLachlan TK, Troutt M, et al. Nonclinical evaluation of GMA161: an antihuman CD16 (FcgammaRIII) monoclonal antibody for treatment of autoimmune disorders in CD16 transgenic mice. Toxicol Sci 2012; 125:299309.
Yu X, Menard M, Prechl J, et al. Monovalent Fc receptor blockade by an anti-Fcgamma receptor/albumin fusion protein ameliorates murine ITP with abrogated toxicity. Blood 2016; 127:132138.
Norris PAA, Segel GB, Burack WR, et al. FcgammaRI and FcgammaRIII on splenic macrophages mediate phagocytosis of antiglycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. Haematologica 2020; doi:10.3324/haematol.2020.248385. (PMID: 10.3324/haematol.2020.248385)
Zuercher AW, Spirig R, Baz Morelli A, et al. Next-generation Fc receptor-targeting biologics for autoimmune diseases. Autoimmun Rev 2019; 18:102366.
Ortiz DF, Lansing JC, Rutitzky L, et al. Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors. Sci Transl Med 2016; 8:365ra158.
Jain A, Olsen HS, Vyzasatya R, et al. Fully recombinant IgG2a Fc multimers (stradomers) effectively treat collagen-induced arthritis and prevent idiopathic thrombocytopenic purpura in mice. Arthritis Res Ther 2012; 14:R192.
Zhang X, Owens J, Olsen HS, et al. A recombinant human IgG1 Fc multimer designed to mimic the active fraction of IVIG in autoimmunity. JCI insight 2019; 4:e121905doi:10.1172/jci.insight.121905. (PMID: 10.1172/jci.insight.121905)
Spirig R, Campbell IK, Koernig S, et al. rIgG1 Fc hexamer inhibits antibody-mediated autoimmune disease via effects on complement and FcγRs. J Immunol 2018; 200:25422553.
Crowley MT, Costello PS, Fitzer-Attas CJ, et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 1997; 186:10271039.
Bussel J, Arnold DM, Grossbard E, et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials. Am J Hematol 2018; 93:921930.
Langrish CL, Bradshaw JM, Owens TD, et al. PRN1008, a reversible covalent BTK inhibitor in clinical development for immune thrombocytopenic purpura. Blood 2017; 130:1052Abstract.
Goldmann L, Duan R, Kragh T, et al. Oral Bruton tyrosine kinase inhibitors block activation of the platelet Fc receptor CD32a (FcγRIIA): a new option in HIT? Blood Adv 2019; 3:40214033.
Jongstra-Bilen J, Puig Cano A, Hasija M, et al. Dual functions of Bruton's tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J Immunol 2008; 181:288298.
Kuter DJ, Boccia RV, Lee E-J, et al. Phase I/II, open-label, adaptive study of oral Bruton tyrosine kinase inhibitor PRN1008 in patients with relapsed/refractory primary or secondary immune thrombocytopenia. Blood 2019; 134:87Abstract.
Pyzik M, Sand KMK, Hubbard JJ, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol 2019; 10:1540.
Fateh-Moghadam A, Wick M, Besinger U, Geursen RG. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet (London, England) 1984; 1:848849.
Li N, Zhao M, Hilario-Vargas J, et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest 2005; 115:34403450.
Crow AR, Lazarus AH. The mechanisms of action of intravenous immunoglobulin and polyclonal antid immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus Med Rev 2008; 22:103116.
Deng R, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of IVIG effects in a murine model of immune thrombocytopenia. J Pharm Sci 2007; 96:16251637.
Hansen RJ, Balthasar JP. Intravenous immunoglobulin mediates an increase in antiplatelet antibody clearance via the FcRn receptor. Thromb Haemost 2002; 88:898899.
Crow AR, Suppa SJ, Chen X, et al. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Blood 2011; 118:64036406.
Bayry J, Kaveri SV. Kill ’Em all: efgartigimod immunotherapy for autoimmune diseases. Trends Pharmacol Sci 2018; 39:919922.
Ulrichts P, Guglietta A, Dreier T, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest 2018; 128:43724386.
Newland AC, Sánchez-González B, Rejtő L, et al. Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia. Am J Hematol 2020; 95:178187.
Kiessling P, Lledo-Garcia R, Watanabe S, et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med 2017; 9:eaan1208.
Robak T, Kaźmierczak M, Jarque I, et al. Rozanolixizumab, an anti-FcRn antibody: final results from a phase II, multiple-dose study in patients with primary immune thrombocytopenia. Blood 2019; 134:897Abstract.
Gable KL, Guptill JT. Antagonism of the neonatal Fc receptor as an emerging treatment for myasthenia gravis. Front Immunol 2019; 10:3052.
Vidarsson G, Stemerding AM, Stapleton NM, et al. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood 2006; 108:35733579.
Qiao S-W, Kobayashi K, Johansen F-E, et al. Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci U S A 2008; 105:93379342.
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520.
Dekkers G, Treffers L, Plomp R, et al. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front Immunol 2017; 8:877.
Fokkink WJR, Falck D, Santbergen TCM, et al. Comparison of Fc N-glycosylation of pharmaceutical products of intravenous immunoglobulin G. PLoS One 2015; 10:e0139828.
Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature 2011; 475:110113.
Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006; 313:670673.
Washburn N, Schwab I, Ortiz D, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci U S A 2015; 112:E1297E1306.
Pagan JD, Kitaoka M, Anthony RM. Engineered sialylation of pathogenic antibodies in vivo attenuates autoimmune disease. Cell 2018; 172:564577. e13.
Schwab I, Mihai S, Seeling M, et al. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol 2014; 44:14441453.
Anthony RM, Wermeling F, Karlsson MCI, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci U S A 2008; 105:1957119578.
Schwab I, Biburger M, Krönke G, et al. IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur J Immunol 2012; 42:826830.
Temming AR, Dekkers G, van de Bovenkamp FS, et al. Human DC-SIGN and CD23 do not interact with human IgG. Sci Rep 2019; 9:9995.
Yu X, Vasiljevic S, Mitchell DA, et al. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol 2013; 425:12531258.
Sharma M, Schoindre Y, Hegde P, et al. Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients. Sci Rep 2014; 4:5672.
Maddur MS, Stephen-Victor E, Das M, et al. Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy. J Neuroinflammation 2017; 14:58.
Galeotti C, Stephen-Victor E, Karnam A, et al. Intravenous immunoglobulin induces IL-4 in human basophils by signaling through surface-bound IgE. J Allergy Clin Immunol 2019; 144:524535. e8.
Lewis BJB, Leontyev D, Neschadim A, et al. GM-CSF and IL-4 are not involved in IVIG-mediated amelioration of ITP in mice: a role for IL-11 cannot be ruled out. Clin Exp Immunol 2018; 193:293301.
Crow AR, Song S, Semple JW, et al. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 2007; 109:155158.
Leontyev D, Katsman Y, Ma X-Z, et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 2012; 52:17991805.
Campbell IK, Miescher S, Branch DR, et al. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J Immunol 2014; 192:50315038.
Leontyev D, Katsman Y, Branch DR. Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fcγ receptor for the amelioration of experimental ITP. Blood 2012; 119:52615264.
Crow AR, Amash A, Lazarus AH. CD44 antibody-mediated amelioration of murine immune thrombocytopenia (ITP): mouse background determines the effect of FcgammaRIIb genetic disruption. Transfusion 2015; 55:14921500.
Arroyo S, Tiessen RG, Denney WS, et al. Hyper-sialylated IgG M254, an innovative therapeutic candidate, evaluated in healthy volunteers and in patients with immune thrombocytopenia purpura: safety, tolerability, pharmacokinetics, and pharmacodynamics. Blood 2019; 134:1090Abstract.
Wang G, de Jong RN, van den Bremer ETJ, et al. Molecular basis of assembly and activation of complement component C1 in complex with immunoglobulin G1 and antigen. Mol Cell 2016; 63:135145.
Hafer-Macko C, Hsieh ST, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol 1996; 40:635644.
Hafer-Macko CE, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol 1996; 39:625635.
Vallat J-M, Mathis S, Vegezzi E, et al. Antibody- and macrophage-mediated segmental demyelination in chronic inflammatory demyelinating polyneuropathy: clinical, electrophysiological, immunological and pathological correlates. Eur J Neurol 2020; 27:692701.
Harschnitz O, van den Berg LH, Johansen LE, et al. Autoantibody pathogenicity in a multifocal motor neuropathy induced pluripotent stem cell-derived model. Ann Neurol 2016; 80:7188.
Zhang G, Lopez PHH, Li CY, et al. Antiganglioside antibody-mediated neuronal cytotoxicity and its protection by intravenous immunoglobulin: implications for immune neuropathies. Brain 2004; 127:10851100.
Basta M, Dalakas MC. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 1994; 94:17291735.
Piepers S, Jansen MD, Cats EA, et al. IVIg inhibits classical pathway activity and anti-GM1 IgM-mediated complement deposition in MMN. J Neuroimmunol 2010; 229:256262.
Yuki N, Watanabe H, Nakajima T, Späth PJ. IVIG blocks complement deposition mediated by anti-GM1 antibodies in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry 2011; 82:8791.
Appeltshauser L, Weishaupt A, Sommer C, Doppler K. Complement deposition induced by binding of anticontactin-1 auto-antibodies is modified by immunoglobulins. Exp Neurol 2017; 287:8490.
Cortese A, Lombardi R, Briani C, et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: clinical relevance of IgG isotype. Neurol Neuroimmunol Neuroinflamm 2020; 7:e639.
Querol L, Rojas-García R, Diaz-Manera J, et al. Rituximab in treatment-resistant CIDP with antibodies against paranodal proteins. Neurol Neuroimmunol Neuroinflamm 2015; 2:e149.
Keller CW, Quast I, Dalakas MC, Lünemann JD. IVIG efficacy in CIDP patients is not associated with terminal complement inhibition. J Neuroimmunol 2019; 330:2327.
Zhou H, Olsen H, So E, et al. A fully recombinant human IgG1 Fc multimer (GL-2045) inhibits complement-mediated cytotoxicity and induces iC3b. Blood Adv 2017; 1:504515.
Lutz HU, Stammler P, Jelezarova E, et al. High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3bn-IgG complexes. Blood 1996; 88:184193.
Sun H, Olsen HS, Mérigeon EY, et al. Recombinant human IgG1 based Fc multimers, with limited FcR binding capacity, can effectively inhibit complement-mediated disease. J Autoimmun 2017; 84:97108.
Heming M, Schulte-Mecklenbeck A, Brix T, et al. Immune cell profiling of the cerebrospinal fluid provides pathogenetic insights into inflammatory neuropathies. Front Immunol 2019; 10:515.
Mausberg AK, Dorok M, Stettner M, et al. Recovery of the T-cell repertoire in CIDP by IV immunoglobulins. Neurology 2013; 80:296303.
Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 1990; 8:579621.
Achiron A, Margalit R, Hershkoviz R, et al. Intravenous immunoglobulin treatment of experimental T cell-mediated autoimmune disease. Upregulation of T cell proliferation and downregulation of tumor necrosis factor alpha secretion. J Clin Invest 1994; 93:600605.
Achiron A, Mor F, Margalit R, et al. Suppression of experimental autoimmune encephalomyelitis by intravenously administered polyclonal immunoglobulins. J Autoimmun 2000; 15:323330.
Quast I, Keller CW, Weber P, et al. Protection from experimental autoimmune encephalomyelitis by polyclonal IgG requires adjuvant-induced inflammation. J Neuroinflammation 2016; 13:42.
Kaufman GN, Massoud AH, Dembele M, et al. Induction of regulatory T cells by intravenous immunoglobulin: a bridge between adaptive and innate immunity. Front Immunol 2015; 6:469.
Ephrem A, Chamat S, Miquel C, et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 2008; 111:715722.
Trinath J, Hegde P, Sharma M, et al. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood 2013; 122:14191427.
Maddur MS, Trinath J, Rabin M, et al. Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with increased prostaglandin E2 levels in the circulation. Cell Mol Immunol 2015; 12:650652.
Xu W, Ren M, Ghosh S, et al. Defects of CTLA-4 are associated with regulatory T cells in myasthenia gravis implicated by intravenous immunoglobulin therapy. Mediators Inflamm 2020; 2020:3645157.
Siragam V, Crow AR, Brinc D, et al. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 2006; 12:688692.
Thiruppathi M, Sheng JR, Li L, et al. Recombinant IgG2a Fc (M045) multimers effectively suppress experimental autoimmune myasthenia gravis. J Autoimmun 2014; 52:6473.
De Groot AS, Moise L, McMurry JA, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide ‘Tregitopes’. Blood 2008; 112:33033311.
Sordé L, Spindeldreher S, Palmer E, Karle A. Tregitopes and impaired antigen presentation: drivers of the immunomodulatory effects of IVIg? Immun Inflamm Dis 2017; 5:400415.
Zhang G, Wang Q, Song Y, et al. Intravenous immunoglobulin promotes the proliferation of CD4(+)CD25(+) Foxp3(+) regulatory T cells and the cytokines secretion in patients with Guillain-Barré syndrome in vitro. J Neuroimmunol 2019; 336:577042.
De Groot AS, Skowron G, White JR, et al. Therapeutic administration of tregitope-human albumin fusion with insulin peptides to promote antigen-specific adaptive tolerance induction. Sci Rep 2019; 9:16103.
Sharabi A, Zinger H, Zborowsky M, et al. A peptide based on the complementarity-determining region 1 of an autoantibody ameliorates lupus by up-regulating CD4+CD25+ cells and TGF-beta. Proc Natl Acad Sci U S A 2006; 103:88108815.
Hahn BH, Anderson M, Le E, La Cava A. Anti-DNA Ig peptides promote Treg cell activity in systemic lupus erythematosus patients. Arthritis Rheum 2008; 58:24882497.
Sthoeger Z, Sharabi A, Asher I, et al. The tolerogenic peptide hCDR1 immunomodulates cytokine and regulatory molecule gene expression in blood mononuclear cells of primary Sjogren's syndrome patients. Clin Immunol 2018; 192:8591.
Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study. Lupus Sci Med 2015; 2:e000104.
معلومات مُعتمدة: Canada CIHR
المشرفين على المادة: 0 (Histocompatibility Antigens Class I)
0 (Immunoglobulins, Intravenous)
0 (Receptors, Fc)
TW3XAW0RCY (Fc receptor, neonatal)
تواريخ الأحداث: Date Created: 20200902 Date Completed: 20210602 Latest Revision: 20210602
رمز التحديث: 20240829
DOI: 10.1097/MOH.0000000000000609
PMID: 32868670
قاعدة البيانات: MEDLINE
الوصف
تدمد:1531-7048
DOI:10.1097/MOH.0000000000000609