دورية أكاديمية

Methylphenidate effects on mice odontogenesis and connections with human odontogenesis.

التفاصيل البيبلوغرافية
العنوان: Methylphenidate effects on mice odontogenesis and connections with human odontogenesis.
المؤلفون: Lima KS; Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil., Salles AES; Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil., de Araújo Costa G; Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil., Yokoyama MF; Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil. mfritola@gmail.com., de Paula Ramos S; Department of Histology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil., Paixão-Côrtes VR; PPGBioEvo, Institute of Biology, Federal University of Bahia (UFBA), 668, Barão de Jeremoabo Street, Salvador, 40170-115, Brazil., de Lima RLLF; PPGBioEvo, Institute of Biology, Federal University of Bahia (UFBA), 668, Barão de Jeremoabo Street, Salvador, 40170-115, Brazil., Salles MJS; Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil.
المصدر: Odontology [Odontology] 2021 Apr; Vol. 109 (2), pp. 336-348. Date of Electronic Publication: 2020 Aug 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Tokyo Country of Publication: Japan NLM ID: 101134822 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-1255 (Electronic) Linking ISSN: 16181247 NLM ISO Abbreviation: Odontology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo : Springer-Verlag Tokyo, c2001-
مواضيع طبية MeSH: Methylphenidate*/pharmacology , Odontogenesis*, Animals ; Humans ; Membrane Proteins ; Mice ; Nerve Tissue Proteins ; Phenotype ; Tooth Germ
مستخلص: The purpose of this study is to evaluate the effects of Methylphenidate exposure on mice odontogenesis and connect them by bioinformatics with human odontogenesis. Thirty-two pregnant Swiss mice were divided into treated group and control group, which received, respectively, 5 mg/kg of Methylphenidate and saline solution from the 5th to the 17th day of pregnancy. The mouse embryos tooth germs were analyzed through optical microscopy, and the data collected were analyzed statistically by Fisher's exact test. The presence and similarity of Methylphenidate-associated genes (Pharmgkb database) in both organisms and their interaction with dental development genes (AmiGO2 database) were verified on STRING database. Rates of tooth germ malformations were higher in treated than in control group (Control: 18; Treated: 27; p = 0.035). Mouse embryo malformations were connected with 238 interactions between 69 dental development genes with 35 Methylphenidate genes. Fourteen interactions for four Methylphenidate genes with four dental development genes, with human experimental data, were connected with mouse phenotype data. By homology, the interactions and conservation of proteins/genes may indicate similar outcomes for both organisms. The exposure to Methylphenidate during pregnancy affected odontogenesis in mouse embryos and may affect human odontogenesis. The study of malformations in mice, with a bioinformatics approach, could contribute to understanding of the Methylphenidate effect on embryo development. These results may provide novel hypotheses for further testing and reinforce the FDA protocol: as Methylphenidate is included in category C, its use during pregnancy should be considered if the benefits outweigh the risks.
References: Thapar A, Cooper M. Attention deficit hyperactivity disorder. Lancet. 2015;6736:1240–50.
Agnew-Blais JC, Polanczyk GV, Danese A, Wertz J, Moffitt TE, Arseneault L. Evaluation of the persistence, remission, and emergence of attention-deficit/hyperactivity disorder in young adulthood. JAMA Psychiat. 2016;73:713–20. (PMID: 10.1001/jamapsychiatry.2016.0465)
Pottegård A, Bjerregaard BK. The use of medication against attention deficit hyperactivity disorder in Denmark: a drug use study from a national perspective. Eur J Clin Pharmacol. 2012;68:1443–500. (PMID: 10.1007/s00228-012-1265-y)
Huybrechts KF, Bröms G, Christensen LB, Einarsdóttir K, Engeland A, Furu K, Gissler M, Hernandez-Diaz S, Karlsson P, Karlstad O, Kieler H, Lahesmaa-Korpinen AM, Mogun H, Nørgaard M, Reutfors J, Sørensen HT, Zoega H, Bateman BT. Association between methylphenidate and amphetamine use in pregnancy and risk of congenital malformations: a cohort study from the international pregnancy safety study consortium. JAMA Psychiat. 2017;75:167–75. (PMID: 10.1001/jamapsychiatry.2017.3644)
Peters HT, Strange LG, Brown SD, Pond BB. The pharmacokinetic profile of methylphenidate use in pregnancy: a study in mice. Neurotoxicol Teratol. 2016;54:1–4. (PMID: 10.1016/j.ntt.2016.01.002)
Olley R, Xavier GM, Seppala M, Volponi AA, Geoghegan F, Sharpe PT, Cobourne MT. Expression analysis of candidate genes regulating successional tooth formation in the human embryo. Front Physiol. 2014;5:1–8. (PMID: 10.3389/fphys.2014.00445)
Thesleff I. Current understanding of the process of tooth formation: transfer from the laboratory to the clinic. Aust Dent J. 2014;59:48–544. (PMID: 10.1111/adj.12102)
Billings RJ, Berkowitz RJ, Watson G. Teeth. Pediatrics. 2004;113:1120–7. (PMID: 15060208)
Kawakami T, Nakamura Y, Karibe H. Cyclophosphamide inhibits root development of molar teeth in growing mice. Odontology. 2015;103:143–51. (PMID: 10.1007/s10266-014-0158-1)
Ornoy A. Pharmacological treatment of attention deficit hyperactivity disorder during pregnancy and lactation. Pharm Res. 2018;35:1–11. (PMID: 10.1007/s11095-017-2323-z)
Dideriksen D, Potteg A, Hallas J, Aagaard L, Damkier P. First trimester in utero exposure to methylphenidate. Basic Clin Pharmacol Toxicol. 2013;112:73–6. (PMID: 10.1111/bcpt.12034)
Humphreys C, Garcia-Bournissen F, Ito S, Koren G. Motherisk update exposure to attention deficit hyperactivity disorder medications during pregnancy. Can Fam Physician. 2007;53:1153–5. (PMID: 178728101949295)
Costa GA, Galvão TC, Bacchi AD, Moreira EG, Salles MJS. Investigation of possible teratogenic effects in the offspring of mice exposed to methylphenidate during pregnancy. Reprod Biomed. 2016;32:170–7. (PMID: 10.1016/j.rbmo.2015.11.016)
Koren G, Barer Y, Ornoy A. Fetal safety of Methylphenidate—a scoping review and meta analysis. Reprod Toxicol. 2020;93:230–4. (PMID: 10.1016/j.reprotox.2020.03.003)
Batterson KD, Southard KA, Dawson DV, Staley RN, Qian F, Slayton RL. The effect of chronic Methylphenidate administration on tooth maturation in a sample of Caucasian children. Pediatr Dent. 2005;27:292–8. (PMID: 16317968)
Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–8. (PMID: 10.1016/j.lfs.2015.10.025)
Montagnini BG, Bortolan S, Santos BD, Moreno AP, Camin NA, Gerardin DCC, Moreira EG. Evaluation of escitalopram, sertraline, and methylphenidate in the immature rat uterotrophic assay. Int J Toxicol. 2013;32:426–30. (PMID: 10.1177/1091581813509674)
McFadyen-Leussis MP, Lewis SP, Bond TLY, Carrey N, Brown RE. Prenatal exposure to Methylphenidate hydrochloride decreases anxiety and increases exploration in mice. Pharmacol Biochem Behav. 2004;77:491–500. (PMID: 10.1016/j.pbb.2003.12.011)
Institute For Laboratory Animal Research. Guide for the care and use of laboratory animals. 8th ed. Washington: The National Academies Press; 2011.
AmiGO2 database. https://amigo.geneontology.org/amigo . Accessed 15 July 2020.
Pharmgkb database. https://www.pharmgkb.org/ . Accessed 15 July 2020.
Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2013;92:414–7. (PMID: 10.1038/clpt.2012.96)
UNIPROT database. https://www.uniprot.org/ . Accessed 15 July 2020.
LALIGN. https://www.ebi.ac.uk/Tools/psa/lalign . Accessed 15 July 2020.
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597–600. (PMID: 10.1093/nar/gkt376)
STRING database. https://string-db.org/ . Accessed 15 July 2020.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein—protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res Oxford University Press. 2019;47:D607–D613613. (PMID: 10.1093/nar/gky1131)
Takara K, Maruo N, Oka K, Kaji C, Hatakeyama Y, Sawa N, Kato Y, Yamashita J, Kojima H, Sawa Y. Morphological study of tooth development in podoplanin-deficient mice. PLoS ONE. 2017;12:1–23. (PMID: 10.1371/journal.pone.0171912)
Baker AS, Freeman MP. Management of attention deficit hyperactivity disorder during pregnancy. Obstet Gynecol Clin NA. 2018;45:495–509. (PMID: 10.1016/j.ogc.2018.04.010)
Zheng Y, Jia L, Liu P, Yang D, Hu W, Wei S. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis. PeerJ. 2016;4(e1684):1–18.
Kim BN, Kim JW, Cummins TDR, Bellgrove MA, Hawi Z, Hong SB, Yang YH, Kim HJ, Shin MS, Cho SC, Kim JH, Son JW, Shin YM, Chung US, Han DH. Norepinephrine genes predict response time variability and Methylphenidate-induced changes in neuropsychological function in attention deficit hyperactivity disorder. J Clin Psychopharmacol. 2013;33:356–62. (PMID: 10.1097/JCP.0b013e31828f9fc3)
Nobles M, Benians A, Tinker A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci. 2005;102:18706–11. (PMID: 10.1073/pnas.0504778102)
de Oliveira PG, Ramos MR, Amaro AJ, Dias RA, Vieira SI. Gi/o-Protein coupled receptors in the aging brain. Front Aging Neurosci. 2019;11:1–44. (PMID: 10.3389/fnagi.2019.00089)
Yang J, Cai W, Lu X, Liu S, Zhao S. RNA-sequencing analyses demonstrate the involvement of canonical transient receptor potential channels in rat tooth germ development. Front Physiol. 2017;8:1–10.
Sancho-Bru P, Bataller R, Colmenero J, Gasull X, Moreno M, Arroyo V, Brenner DA, Gines P. Norepinephrine induces calcium spikes and proinflammatory actions in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2006;291:G877–G884884. (PMID: 10.1152/ajpgi.00537.2005)
Sung U, Binda F, Savchenko V, Owens WA, Daws LC. Ca2+ dependent surface trafficking of norepinephrine transporters depends on threonine 30 and Ca2+ calmodulin kinases. J Chem Neuroanat. 2016;1:19–35.
Nanci A, Tencate A. Ten Cate’s oral histology: development, structure, and function. 8th ed. Saint Louis: Elsevier; 2013.
Huang X, XuJr XPB, Hung YP, Chai Y. Smad4-Shh-Nfic signaling cascade—mediated regulating tooth root development. J Bone Miner Res. 2010;25:1167–78. (PMID: 19888897)
Sousa-Romero L, Moreno-Fernández AM. Growth and transcription factors in tooth development. Int J Craniofacial Sci. 2016;2:15–29. (PMID: 10.17352/2455-4634.000014)
Katchburian E, Arana-Chavez V. Histologia e embriologia oral: texto-atlas-correlações clínicas. 3rd ed. Rio de Janeiro: Guanabara-Koogan; 2012.
Lee HK, Lee DS, Park SJ, Cho KH, Bae HS, Park JC. Nuclear Factor I-C (NFIC) regulates dentin sialophosphoprotein (DSPP) and E-cadherin via control of Krüppel-like factor 4 (KLF4) during dentinogenesis. J Biol Chem. 2014;289:28225–36. (PMID: 10.1074/jbc.M114.568691)
Kim TH, Bae CH, Yang S, Park JC, Cho ES. Nfic regulates tooth root patterning and growth. Anat Cell Biol. 2015;48:188–94. (PMID: 10.5115/acb.2015.48.3.188)
فهرسة مساهمة: Keywords: Methylphenidate; Mice; Morphogenesis; Odontogenesis; Tooth germ
المشرفين على المادة: 0 (Amigo2 protein, mouse)
0 (Membrane Proteins)
0 (Nerve Tissue Proteins)
207ZZ9QZ49 (Methylphenidate)
تواريخ الأحداث: Date Created: 20200902 Date Completed: 20210316 Latest Revision: 20210316
رمز التحديث: 20231215
DOI: 10.1007/s10266-020-00548-2
PMID: 32869117
قاعدة البيانات: MEDLINE