دورية أكاديمية

L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA 1 .

التفاصيل البيبلوغرافية
العنوان: L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA 1 .
المؤلفون: Lambertus M; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway., Øverberg LT; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.; Institute for Behavioural Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway., Andersson KA; The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.; Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway., Hjelden MS; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway., Hadzic A; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway., Haugen ØP; The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway., Storm-Mathisen J; Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway., Bergersen LH; The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark., Geiseler S; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway., Morland C; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.; Institute for Behavioural Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway.
المصدر: Acta physiologica (Oxford, England) [Acta Physiol (Oxf)] 2021 Mar; Vol. 231 (3), pp. e13587. Date of Electronic Publication: 2020 Dec 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101262545 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1748-1716 (Electronic) Linking ISSN: 17481708 NLM ISO Abbreviation: Acta Physiol (Oxf) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley-Blackwell
Original Publication: Oxford : Blackwell Pub., c2006-4
مواضيع طبية MeSH: Lateral Ventricles* , Neural Stem Cells*, Animals ; Cell Proliferation ; Lactic Acid ; Mice ; Mice, Knockout ; Neurogenesis
مستخلص: Aim: Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA 1 -dependent effects on neurogenesis in the two main neurogenic niches.
Methods: Wild-type and HCA 1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone.
Results: We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA 1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA 1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment.
Conclusion: Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA 1 activation. This opens for a role of HCA 1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.
(© 2020 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.)
References: Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: Systematic review and meta-analysis. BMC Public Health. 2014;14:643.
Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.
Hayes SM, Alosco ML, Hayes JP, et al. Physical activity is positively associated with episodic memory in aging. J Int Neuropsychol Soc. 2015;21(10):780-790.
Hayes SM, Forman DE, Verfaellie M. Cardiorespiratory fitness is associated with cognitive performance in older but not younger adults. J Gerontol B Psychol Sci Soc Sci. 2016;71(3):474-482.
Hayes SM, Hayes JP, Williams VJ, Liu H, Verfaellie M. Fmri activity during associative encoding is correlated with cardiorespiratory fitness and source memory performance in older adults. Cortex. 2017;91:208-220.
Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673-2734.
van Praag H. Exercise and the brain: Something to chew on. Trends Neurosci. 2009;32(5):283-290.
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018;19(2):63-80.
van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25(38):8680-8685.
Ding YH, Li J, Zhou Y, Rafols JA, Clark JC, Ding Y. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res. 2006;3(1):15-23.
Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery. 2020;19 (9):609-633. http://dx.doi.org/10.1038/s41573-020-0072-x.
van Praag H. Neurogenesis and exercise: Past and future directions. Neuromolecular Med. 2008;10(2):128-140.
Itoh T, Imano M, Nishida S, et al. Exercise increases neural stem cell proliferation surrounding the area of damage following rat traumatic brain injury. J Neural Transm (Vienna). 2011;118(2):193-202.
Brown J, Cooper-Kuhn CM, Kempermann G, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003;17(10):2042-2046.
Kvam S, Kleppe CL, Nordhus IH, Hovland A. Exercise as a treatment for depression: A meta-analysis. J Affect Disord. 2016;202:67-86.
Gujral S, Aizenstein H, Reynolds CF 3rd, Butters MA, Erickson KI. Exercise effects on depression: Possible neural mechanisms. Gen Hosp Psychiatry. 2017;49:2-10.
Schuch FB, Vancampfort D, Rosenbaum S, et al. Exercise for depression in older adults: A meta-analysis of randomized controlled trials adjusting for publication bias. Braz J Psychiatry. 2016;38(3):247-254.
Schuch FB, Vancampfort D, Richards J, Rosenbaum S, Ward PB, Stubbs B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J Psychiatr Res. 2016;77:42-51.
Schuch FB, Stubbs B. The role of exercise in preventing and treating depression. Curr Sports Med Rep. 2019;18(8):299-304.
Knapen J, Vancampfort D, Moriën Y, Marchal Y. Exercise therapy improves both mental and physical health in patients with major depression. Disabil Rehabil. 2015;37(16):1490-1495.
Gultyaeva VV, Zinchenko MI, Uryumtsev DY, Krivoschekov SG, Aftanas LI. Exercise for depression treatment. Physiological mechanisms. Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119(7):112-119.
Micheli L, Ceccarelli M, D'Andrea G, Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull. 2018;143:181-193.
Poyatos-León R, García-Hermoso A, Sanabria-Martínez G, Álvarez-Bueno C, Cavero-Redondo I, Martínez-Vizcaíno V. Effects of exercise-based interventions on postpartum depression: A meta-analysis of randomized controlled trials. Birth. 2017;44(3):200-208.
Archer T, Josefsson T, Lindwall M. Effects of physical exercise on depressive symptoms and biomarkers in depression. CNS Neurol Disord Drug Targets. 2014;13(10):1640-1653.
Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology. 2015;40(10):2368-2378.
Pereira AC, Huddleston DE, Brickman AM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A. 2007;104(13):5638-5643.
Mateus-Pinheiro A, Patrício P, Bessa JM, Sousa N, Pinto L. Cell genesis and dendritic plasticity: A neuroplastic pas de deux in the onset and remission from depression. Mol Psychiatry. 2013;18(7):748-750.
Yau SY, Lau BW, So KF. Adult hippocampal neurogenesis: A possible way how physical exercise counteracts stress. Cell Transplant. 2011;20(1):99-111.
Yau SY, Gil-Mohapel J, Christie BR, So KF. Physical exercise-induced adult neurogenesis: A good strategy to prevent cognitive decline in neurodegenerative diseases? Biomed Res Int. 2014;2014:1-20.
Huang P, Dong Z, Huang W, et al. Voluntary wheel running ameliorates depression-like behaviors and brain blood oxygen level-dependent signals in chronic unpredictable mild stress mice. Behav Brain Res. 2017;330:17-24.
Gage FH. Adult neurogenesis in mammals. Science. 2019;364(6443):827-828.
Maslov AY, Barone TA, Plunkett RJ, Pruitt SC. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci. 2004;24(7):1726-1733.
Alvarez-Buylla A, Kirn JR. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol. 1997;33(5):585-601.
Corotto FS, Henegar JA, Maruniak JA. Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett. 1993;149(2):111-114.
Doetsch F, Alvarez-Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A. 1996;93(25):14895-14900.
Lois C, García-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996;271(5251):978-981.
Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):2074-2077.
Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22(4):589-599.e585.
Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377-381.
Paredes MF, Sorrells SF, Cebrian-Silla A, et al. Does adult neurogenesis persist in the human hippocampus? Cell Stem Cell. 2018;23(6):780-781.
Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med. 2019;25(4):554-560.
Kempermann G, Gage FH, Aigner L, et al. Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell. 2018;23(1):25-30.
Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344(6184):630-634.
Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477(7362):90-94.
Licht T, Keshet E. The vascular niche in adult neurogenesis. Mech Dev. 2015;138(Pt 1):56-62.
Shook BA, Manz DH, Peters JJ, Kang S, Conover JC. Spatiotemporal changes to the subventricular zone stem cell pool through aging. J Neurosci. 2012;32(20):6947-6956.
Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci. 2004;24(38):8354-8365.
Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci. 2002;22(7):2679-2689.
Eichenbaum H, Robitsek RJ. Olfactory memory: A bridge between humans and animals in models of cognitive aging. Ann N Y Acad Sci. 2009;1170:658-663.
Ernst A, Alkass K, Bernard S, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072-1083.
Bédard A, Cossette M, Lévesque M, Parent A. Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett. 2002;328(3):213-216.
Bédard A, Lévesque M, Bernier PJ, Parent A. The rostral migratory stream in adult squirrel monkeys: Contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein bcl-2. Eur J Neurosci. 2002;16(10):1917-1924.
Tonchev AB, Yamashima T, Sawamoto K, Okano H. Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia. J Neurosci Res. 2005;81(6):776-788.
Zachrisson O, Zhao M, Andersson A, et al. Restorative effects of platelet derived growth factor-bb in rodent models of Parkinson's disease. J Parkinsons Dis. 2011;1(1):49-63.
Androutsellis-Theotokis A, Rueger MA, Mkhikian H, Korb E, McKay RD. Signaling pathways controlling neural stem cells slow progressive brain disease. Cold Spring Harb Symp Quant Biol. 2008;73:403-410.
Farioli-Vecchioli S, Tirone F. Control of the cell cycle in adult neurogenesis and its relation with physical exercise. Brain Plast. 2015;1(1):41-54.
El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-induced neuroplasticity: A mechanistic model and prospects for promoting plasticity. Neuroscientist. 2019;25(1):65-85.
Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H. Exercise and hippocampal memory systems. Trends Cogn Sci. 2019;23(4):318-333.
Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via bdnf. Front Neurosci. 2018;12:52.
Dietrich JB. The mef2 family and the brain: From molecules to memory. Cell Tissue Res. 2013;352(2):179-190.
Lin YT, Huang CC, Hsu KS. Oxytocin promotes long-term potentiation by enhancing epidermal growth factor receptor-mediated local translation of protein kinase mζ. J Neurosci. 2012;32(44):15476-15488.
Tapia-Rojas C, Aranguiz F, Varela-Nallar L, Inestrosa NC. Voluntary running attenuates memory loss, decreases neuropathological changes and induces neurogenesis in a mouse model of Alzheimer's disease. Brain Pathol. 2016;26(1):62-74.
Cho J, Shin MK, Kim D, Lee I, Kim S, Kang H. Treadmill running reverses cognitive declines due to Alzheimer disease. Med Sci Sports Exerc. 2015;47(9):1814-1824.
Moore KM, Girens RE, Larson SK, et al. A spectrum of exercise training reduces soluble aβ in a dose-dependent manner in a mouse model of Alzheimer's disease. Neurobiol Dis. 2016;85:218-224.
Law LL, Rol RN, Schultz SA, et al. Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer's disease. Alzheimers Dement (Amst). 2018;10:188-195.
Okonkwo OC, Schultz SA, Oh JM, et al. Physical activity attenuates age-related biomarker alterations in preclinical ad. Neurology. 2014;83(19):1753-1760.
Liu HL, Zhao G, Cai K, Zhao HH, Shi LD. Treadmill exercise prevents decline in spatial learning and memory in app/ps1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res. 2011;218(2):308-314.
Yuede CM, Zimmerman SD, Dong H, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the tg2576 mouse model of Alzheimer's disease. Neurobiol Dis. 2009;35(3):426-432.
Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked fndc5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat Med. 2019;25(1):165-175.
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res. 2015;1628(Pt B):327-342.
Sah N, Peterson BD, Lubejko ST, Vivar C, van Praag H. Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons. Sci Rep. 2017;7(1):10903.
Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26(1):3-11.
Trinchero MF, Buttner KA, Sulkes Cuevas JN, et al. High plasticity of new granule cells in the aging hippocampus. Cell Rep. 2017;21(5):1129-1139.
Paillard T, Rolland Y, de Souto BP. Protective effects of physical exercise in alzheimer's disease and Parkinson's disease: A narrative review. J Clin Neurol. 2015;11(3):212-219.
Niwa A, Nishibori M, Hamasaki S, et al. Voluntary exercise induces neurogenesis in the hypothalamus and ependymal lining of the third ventricle. Brain Struct Funct. 2016;221(3):1653-1666.
Blackmore DG, Vukovic J, Waters MJ, Bartlett PF. Gh mediates exercise-dependent activation of svz neural precursor cells in aged mice. PLoS One. 2012;7(11):e49912.
Lee JC, Yau SY, Lee TMC, Lau BW, So KF. Voluntary wheel running reverses the decrease in subventricular zone neurogenesis caused by corticosterone. Cell Transplant. 2016;25(11):1979-1986.
Mastrorilli V, Scopa C, Saraulli D, et al. Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of btg1 knockout mice. Brain Struct Funct. 2017;222(6):2855-2876.
Farioli-Vecchioli S, Ceccarelli M, Saraulli D, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, bmp4, hes1/5 and ids. Front Cell Neurosci. 2014;8:98.
Lauritzen KH, Morland C, Puchades M, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex. 2014;24(10):2784-2795.
Morland C, Lauritzen KH, Puchades M, et al. The lactate receptor, g-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res. 2015;93(7):1045-1055.
Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A, et al. L-lactate promotes adult hippocampal neurogenesis. Front Neurosci. 2019;13:403.
Gibbs ME, Hertz L. Inhibition of astrocytic energy metabolism by d-lactate exposure impairs memory. Neurochem Int. 2008;52(6):1012-1018.
Suzuki A, Stern S, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144(5):810-823.
de Castro AH, Briquet M, Schmuziger C, et al. The lactate receptor hcar1 modulates neuronal network activity through the activation of g(α) and g(βγ) subunits. J Neurosci. 2019;39(23):4422-4433.
Bozzo L, Puyal J, Chatton JY. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS One. 2013;8(8):e71721.
Scavuzzo CJ, Rakotovao I, Dickson CT. Differential effects of l- and d-lactate on memory encoding and consolidation: Potential role of hcar1 signaling. Neurobiol Learn Mem. 2020;168:107151.
E L, Lu J, Selfridge JE, Burns JM, Swerdlow RH. Lactate administration reproduces specific brain and liver exercise-related changes. J Neurochem. 2013;127(1):91-100.
Morland C, Andersson KA, Haugen ØP, et al. Exercise induces cerebral vegf and angiogenesis via the lactate receptor hcar1. Nat Commun. 2017;8:15557.
Madelaine R, Sloan SA, Huber N, et al. Microrna-9 couples brain neurogenesis and angiogenesis. Cell Rep. 2017;20(7):1533-1542.
Hadzic A, Nguyen TD, Hosoyamada M, et al. The lactate receptor hca(1) is present in the choroid plexus, the tela choroidea, and the neuroepithelial lining of the dorsal part of the third ventricle. Int J Mol Sci. 2020;21(18).
Liu C, Wu J, Zhu J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan g-protein-coupled receptor, gpr81. J Biol Chem. 2009;284(5):2811-2822.
Dvorak CA, Liu C, Shelton J, et al. Identification of hydroxybenzoic acids as selective lactate receptor (gpr81) agonists with antilipolytic effects. ACS Med Chem Lett. 2012;3(8):637-639.
Cooper C, Moon HY, van Praag H. On the run for hippocampal plasticity. Cold Spring Harb Perspect Med. 2018;8(4).
Pikor NB, Cupovic J, Onder L, Gommerman JL, Ludewig B. Stromal cell niches in the inflamed central nervous system. J Immunol. 2017;198(5):1775-1781.
Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (virchow-robin) spaces in the human cerebrum. J Anat. 1990;170:111-123.
Kawai T, Takagi N, Mochizuki N, et al. Inhibitor of vascular endothelial growth factor receptor tyrosine kinase attenuates cellular proliferation and differentiation to mature neurons in the hippocampal dentate gyrus after transient forebrain ischemia in the adult rat. Neuroscience. 2006;141(3):1209-1216.
Kalluri HS, Dempsey RJ. Growth factors, stem cells, and stroke. Neurosurg Focus. 2008;24(3-4):E14.
Benito E, Barco A. Creb's control of intrinsic and synaptic plasticity: Implications for creb-dependent memory models. Trends Neurosci. 2010;33(5):230-240.
Wu Y, Wang M, Zhang K, et al. Lactate enhanced the effect of parathyroid hormone on osteoblast differentiation via gpr81-pkc-akt signaling. Biochem Biophys Res Commun. 2018;503(2):737-743.
Lee YJ, Shin KJ, Park S-A, et al. G-protein-coupled receptor 81 promotes a malignant phenotype in breast cancer through angiogenic factor secretion. Oncotarget. 2016;7(43):70898-70911.
Ma K, Ding X, Song Q, et al. Lactate enhances arc/arg3.1 expression through hydroxycarboxylic acid receptor 1-β-arrestin2 pathway in astrocytes. Neuropharmacology. 2020;171:108084. https://doi.org/10.1016/j.neuropharm.2020.108084.
Percie du Sert N, Hurst V, Ahluwalia A, et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. J Physiol. 2020;16(1). https://doi.org/10.1186/s12917-020-02451-y.
Persson PB. Good publication practice in physiology 2019. Acta Physiol (Oxf). 2019;227(4):e13405.
Ahmed K, Tunaru S, Tang C, et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through gpr81. Cell Metab. 2010;11(4):311-319.
Rolim N, Skårdal K, Høydal M, et al. Aerobic interval training reduces inducible ventricular arrhythmias in diabetic mice after myocardial infarction. Basic Res Cardiol. 2015;110(4):44.
Kemi OJ, Loennechen JP, Wisløff U, Ellingsen Ø. Intensity-controlled treadmill running in mice: Cardiac and skeletal muscle hypertrophy. J Appl Physiol. 2002;93(4):1301-1309.
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682.
Dragunow M, Feng S, Rustenhoven J, Curtis M, Faull R. Studying human brain inflammation in leptomeningeal and choroid plexus explant cultures. Neurochem Res. 2016;41(3):579-588.
Beautrait A, Paradis JS, Zimmerman B, et al. A new inhibitor of the beta-arrestin/ap2 endocytic complex reveals interplay between gpcr internalization and signalling. Nat Commun. 2017;8:15054.
فهرسة مساهمة: Keywords: GPR81; HCA1; HCAR1; adult neurogenesis; exercise; lactate
سلسلة جزيئية: RefSeq RRID:SCR_003070; RRID:SCR_002865
المشرفين على المادة: 33X04XA5AT (Lactic Acid)
تواريخ الأحداث: Date Created: 20201127 Date Completed: 20210818 Latest Revision: 20210818
رمز التحديث: 20231215
DOI: 10.1111/apha.13587
PMID: 33244894
قاعدة البيانات: MEDLINE
الوصف
تدمد:1748-1716
DOI:10.1111/apha.13587