دورية أكاديمية

Affinity and chemical enrichment strategies for mapping low-abundance protein modifications and protein-interaction networks.

التفاصيل البيبلوغرافية
العنوان: Affinity and chemical enrichment strategies for mapping low-abundance protein modifications and protein-interaction networks.
المؤلفون: Zacharias AO; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA., Fang Z; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA., Rahman A; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA., Talukder A; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA., Cornelius S; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA., Chowdhury SM; Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA.
المصدر: Journal of separation science [J Sep Sci] 2021 Jan; Vol. 44 (1), pp. 310-322. Date of Electronic Publication: 2020 Dec 14.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101088554 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9314 (Electronic) Linking ISSN: 16159306 NLM ISO Abbreviation: J Sep Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2001-
مواضيع طبية MeSH: Protein Interaction Maps*, Proteins/*chemistry , Proteins/*metabolism, Arginine/chemistry ; Arginine/metabolism ; Protein Processing, Post-Translational
مستخلص: Protein post-translational modifications and protein interactions are the central research areas in mass-spectrometry-based proteomics. Protein post-translational modifications affect protein structures, stabilities, activities, and all cellular processes are achieved by interactions among proteins and protein complexes. With the continuing advancements of mass spectrometry instrumentations of better sensitivity, speed, and performance, selective enrichment of modifications/interactions of interest from complex cellular matrices during the sample preparation has become the overwhelming bottleneck in the proteomics workflow. Therefore, many strategies have been developed to address this issue by targeting specific modifications/interactions based on their physical properties or chemical reactivities, but only a few have been successfully applied for systematic proteome-wide study. In this review, we summarized the highlights of recent developments in the affinity enrichment methods focusing mainly on low stoichiometric protein lipidations. Besides, to identify potential glyoxal modified arginines, a small part was added for profiling reactive arginine sites using an enrichment reagent. A detailed section was provided for the enrichment of protein interactions by affinity purification and chemical cross-linking, to shed light on the potentials of different enrichment strategies, along with the unique challenges in investigating individual protein post-translational modification or protein interaction network.
(© 2020 Wiley-VCH GmbH.)
References: Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21:255-61.
Hennrich ML, Gavin A-C. Quantitative mass spectrometry of post-translational modifications: Keys to confidence. Sci Signal. 2015;8:re5.
Zhao Y, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9:4632-41.
Villén J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc. 2008;3:1630-8.
Zhang J, Guy MJ, Norman HS, Chen YC, Xu Q, Dong X, Guner H, Wang S, Kohmoto T, Young KH, Moss RL, Ge Y. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J Proteom Res. 2011;10:4054-65.
Tucholski T, Cai W, Gregorich ZR, Bayne EF, Mitchell SD, McIlwain SJ, de Lange WJ, Wrobbel M, Karp H, Hite Z, Vikhorev PG, Marston SB, Lal S, Li A, Dos Remedios C, Kohmoto T, Hermsen J, Ralphe JC, Kamp TJ, Moss RL, Ge Y. Distinct hypertrophic cardiomyopathy genotypes result in convergent sarcomeric proteoform profiles revealed by top-down proteomics. Proc Natl Acad Sci USA. 2020;117:24691-700.
De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. 2010;6, e1000807.
Chen B, Sun Y, Niu J, Jarugumilli GK, Wu X. Protein Lipidation in Cell Signaling and Diseases: Function, Regulation, and Therapeutic Opportunities. Cell Chem Biol. 2018;25:817-31.
Zhang FL, Casey PJ. Protein Prenylation: Molecular Mechanisms and Functional Consequences. Annu Rev Biochem. 1996;65:241-69.
Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016;17:110-22.
Clarke S. Protein Isoprenylation and Methylation at Carboxyl-Terminal Cysteine Residues. Annu Rev Biochem. 1992;61:355-86.
Schafer WR, Rine J. Protein Prenylation: Genes, Enzymes, Targets, and Functions. Annu Rev Genet. 1992;26:209-37.
Pepinsky RB, Zeng C, Went D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 1998;273:14037-45.
Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. Monounsaturated Fatty Acid Modification of Wnt Protein: Its Role in Wnt Secretion. Dev Cell. 2006;11:791-801.
Hannoush RN, Sun J. The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol. 2010;6:498-506.
Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PIH. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell. 2010;141:458-71.
Hentschel A, Zahedi RP, Ahrends R. Protein lipid modifications-More than just a greasy ballast. Proteomics. 2016;16:759-82.
Cox AD, Der CJ, Philips MR. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery? Clin Cancer Res. 2015;21:1819-27.
Maurer-Stroh S, Eisenhaber B, Eisenhaber F. N-terminal N-myristoylation of proteins: Prediction of substrate proteins from amino acid sequence. J Mol Biol. 2002;317:541-57.
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol. 2010;3:19-35.
Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat Rev Cancer. 2011;11:775-91.
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol. 2019;54:29-39.
Ishizawar R, Parsons SJ. C-Src and cooperating partners in human cancer. Cancer Cell. 2004;6:209-14.
Linder ME, Deschenes RJ. Palmitoylation: Policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007;8:74-84.
Chavda B, Arnott JA, Planey SL. Targeting protein palmitoylation: Selective inhibitors and implications in disease. Expert Opin Drug Discov. 2014;9:1005-19.
Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Targeted profiling of Arabidopsis thaliana subproteomes illuminates co- and post-translationally N-terminal myristoylated proteins. Plant Cell. 2018;30:543-62.
Gustafsson M, Curstedt T, Jörnvall H, Johansson J. Reverse-phase HPLC of the hydrophobia pulmonary surfactant proteins: Detection of a surfactant protein C isoform containing Nε-palmitoyl-lysine. Biochem J. 1997;326:799-806.
Ji Y, Leymarie N, Haeussler DJ, Bachschmid MM, Costello CE, Lin C. Direct detection of S-palmitoylation by mass spectrometry. Anal Chem. 2013;85:11952-9.
Wotske M, Wu Y, Wolters DA. Liquid Chromatographic Analysis and Mass Spectrometric Identification of Farnesylated Peptides. Anal Chem. 2012;84:6848-55.
Berndt N, Sebti SM. Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc. 2011;6:1775-91.
Saxon E, Bertozzi CR. Cell surface engineering by a modified Staudinger reaction. Science. 2000;287:2007-10.
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew Chem, Int Ed. 2002;41:2596-9.
Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA. 2004;101:12479-84.
Hang HC, Geutjes EJ, Grotenbreg G, Pollington AM, Bijlmakers MJ, Ploegh HL. Chemical probes for the rapid detection of fatty-acylated proteins in mammalian cells. J Am Chem Soc. 2007;129:2744-5.
Gao X, Hannoush RN. A Decade of Click Chemistry in Protein Palmitoylation: Impact on Discovery and New Biology. Cell Chem Biol. 2018;25:236-46.
Storck EM, Morales-Sanfrutos J, Serwa RA, Panyain N, Lanyon-Hogg T, Tolmachova T, Ventimiglia LN, Martin-Serrano J, Seabra MC, Wojciak-Stothard B, Tate EW. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat Chem. 2019;11:552-61.
Thinon E, Serwa RA, Broncel M, Brannigan JA, Brassat U, Wright MH, Heal WP, Wilkinson AJ, Mann DJ, Tate EW. Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun. 2014;5:1-13.
Yount JS, Moltedo B, Yang YY, Charron G, Moran TM, López CB, Hang HC. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol. 2010;6:610-4.
Drisdel RC, Green WN. Labeling and quantifying sites of protein palmitoylation. BioTechniques. 2004;36:276-85.
Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR, Davis NG, Global Analysis of Protein Palmitoylation in Yeast. Cell. 2006;125:1003-13.
Wan J, Roth AF, Bailey AO, Davis NG. Palmitoylated proteins: Purification and identification. Nat Protoc. 2007;2:1573-84.
Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR, Davis NG, El-Husseini A. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456:904-9.
Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteom. 2010;9:54-70.
Forrester MT, Hess DT, Thompson JW, Hultman R, Moseley MA, Stamler JS, Casey PJ. Site-specific analysis of protein S-acylation by resin-assisted capture. J Lipid Res. 2011;52:393-8.
Bhawal RP, Sadananda SC, Bugarin A, Laposa B, Chowdhury SM. Mass Spectrometry Cleavable Strategy for Identification and Differentiation of Prenylated Peptides. Anal Chem. 2015;87:2178-86.
Bhawal RP, Shahinuzzaman ADA, Chowdhury SM. Gas-Phase Fragmentation Behavior of Oxidized Prenyl Peptides by CID and ETD Tandem Mass Spectrometry. J Am Soc Mass Spectrom. 2017;28:704-7.
Wilkins JA, Kaasik K, Chalkley RJ, Burlingame AL. Characterization of Prenylated C-terminal Peptides Using a Thiopropyl-based Capture Technique and LC-MS/MS. Mol Cell Proteom. 2020;6:1005-16.
Lopez-Clavijo AF, CA, Duque-Daza, I,R, Canelon, MP, Barrow, D, Kilgour, N Rabbani, PJ, Thornalley, PB, O'Connor. Study of an unusual advanced glycation end-product (AGE) derived from glyoxal using mass spectrometry. J Am Soc Mass Spectrom. 2014;25:673-83.
Leitner A, Lindner W. Probing of arginine residues in peptides and proteins using selective tagging and electrospray ionization mass spectrometry. J Mass Spectrom. 2003;38:891-9.
Leitner A, Lindner W. Functional probing of arginine residues in proteins using mass spectrometry and an arginine-specific covalent tagging concept. Anal Chem. 2005;77:4481-8.
Wanigasekara M, Chowdhury S. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry. Anal Chim Acta. 2016;935:197-206.
Wanigasekara MSK, Huang X, Chakrabarty JK, Bugarin A, Chowdhury SM. Arginine-Selective Chemical Labeling Approach for Identification and Enrichment of Reactive Arginine Residues in Proteins. ACS Omega. 2018;3:14229-35.
Gingras AC, Gstaiger M, Raught B, Aebersold R. Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol. 2007;8:645-54.
Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O'Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440:637-43.
Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D'Orso I, Fernandes J, Fahey M, Mahon C, Oĝdonoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ. Global landscape of HIV-human protein complexes. Nature. 2012;481:365-70.
Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J, Tam S, Zarraga G, Colby G, Baltier K. The BioPlex network: a systematic exploration of the human interactome. Cell. 2015;162:425-40.
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505-9.
Gentzel M, Pardo M, Subramaniam S, Stewart AF, Choudhary JS. Proteomic navigation using proximity-labeling. Methods. 2019;164:67-72.
Samavarchi-Tehrani P, Samson R, Gingras A-C. Proximity dependent biotinylation: key enzymes and adaptation to proteomics approaches. Mol Cell Proteom. 2020;19:757-73.
Lambert J-P, Tucholska M, Go C, Knight JD, Gingras A-C. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteom. 2015;118:81-94.
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459-68.
Shahinuzzaman ADA, Chakrabarty JK, Fang Z, Smith D, Kamal AHM, Chowdhury SM. Improved in-solution trypsin digestion method for methanol-chloroform precipitated cellular proteomics sample. J Sep Sci. 2020;43:2125-32.
Chalkley RJ, Baker PR, Medzihradszky KF, Lynn AJ, Burlingame AL. In-depth analysis of tandem mass spectrometry data from disparate instrument types. Mol Cell Proteom. 2008;7:2386-98.
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301-19.
Chakrabarty JK, Kamal AHM, Shahinuzzaman ADA, Chowdhury SM. Proteomics Network Analysis of Polarized Macrophages. Methods Mol Biol. 2020;2184:61-75.
Kamal AHM, Chakrabarty JK, Udden SMN, Zaki MH, Chowdhury SM. Inflammatory Proteomic Network Analysis of Statin-treated and Lipopolysaccharide-activated Macrophages. Sci Rep. 2018;8:1-13.
Kamal AHM, Fessler MB, Chowdhury SM. Comparative and network-based proteomic analysis of low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS One. 2018;13, e0193104.
Pertl-Obermeyer H, Obermeyer G. In Vivo Cross-Linking to Analyze Transient Protein-Protein Interactions. Plant Proteomics. Springer 2020, pp. 273-87.
Tagwerker C, Flick K, Cui M, Guerrero C, Dou Y, Auer B, Baldi P, Huang L, Kaiser P. A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteom. 2006;5:737-48.
Guerrero C, Tagwerker C, Kaiser P, Huang L. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteom. 2006;5:366-78.
Chowdhury SM, Shi L, Yoon H, Ansong C, Rommereim LM, Norbeck AD, Auberry KJ, Moore RJ, Adkins JN, Heffron F. A method for investigating protein− protein interactions related to Salmonella Typhimurium pathogenesis. J Proteom Res. 2009;8:1504-14.
Kamal AHM, Aloor JJ, Fessler MB, Chowdhury SM. Cross-linking Proteomics Indicates Effects of Simvastatin on the TLR2 interactome and Reveals ACTR1A as a Novel Regulator of the TLR2 Signal Cascade. Mol Cell Proteom. 2019;18:1732-44.
Chakrabarty JK, Naik AG, Fessler MB, Munske GR, Chowdhury SM. Differential Tandem Mass Spectrometry-Based Cross-Linker: A New Approach for High Confidence in Identifying Protein Cross-Linking. Anal Chem. 2016;88:10215-22.
Makowski MM, Willems E, Jansen PW, Vermeulen M. Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification. Mol Cell Proteom. 2016;15:854-65.
Chen ZL, Meng JM, Cao Y, Yin JL, Fang RQ, Fan SB, Liu C, Zeng WF, Ding YH, Tan D, Wu L, Zhou WJ, Chi H, Sun RX, Dong MQ, He SM. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat Commun. 2019;10:3404.
Elia G. Biotinylation reagents for the study of cell surface proteins. Proteomics. 2008;8:4012-24.
Chakrabarty JK, Sadananda SC, Bhat A, Naik AJ, Ostwal DV, Chowdhury SM. High Confidence Identification of Cross-Linked Peptides by an Enrichment-Based Dual Cleavable Cross-Linking Technology and Data Analysis tool Cleave-XL. J Am Soc Mass Spectrom. 2020;31:173-82.
Makepeace KA, Mohammed Y, Rudashevskaya EL, Petrotchenko EV, Vögtle F-N, Meisinger C, Sickmann A, Borchers CH. Improving Identification of In-organello Protein-Protein Interactions Using an Affinity-enrichable, Isotopically Coded, and Mass Spectrometry-cleavable Chemical Crosslinker. Mol Cell Proteom. 2020;19:624-39.
Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y, Novtisky EJ, Second T, Duan J, Kao A. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol Cell Proteom. 2014;13:3533-43.
Tan D, Li Q, Zhang M-J, Liu C, Ma C, Zhang P, Ding Y-H, Fan S-B, Tao L, Yang B. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. Elife. 2016;5, e12509.
Chowdhury SM, Munske GR, Tang X, Bruce JE. Collisionally activated dissociation and electron capture dissociation of several mass spectrometry-identifiable chemical cross-linkers. Anal Chem. 2006;78:8183-93.
Chowdhury SM, Du X, Tolić N, Wu S, Moore RJ, Mayer MU, Smith RD, Adkins JN. Identification of cross-linked peptides after click-based enrichment using sequential collision-induced dissociation and electron transfer dissociation tandem mass spectrometry. Anal Chem. 2009;81:5524-32.
Vellucci D, Kao A, Kaake RM, Rychnovsky SD, Huang L. Selective enrichment and identification of azide-tagged cross-linked peptides using chemical ligation and mass spectrometry. J Am Soc Mass Spectrom. 2010;21:1432-45.
Rey M, Dupré M, Lopez-Neira I, Duchateau M, Chamot-Rooke J. EXL-MS: An Enhanced Cross-Linking Mass Spectrometry Workflow to Study Protein Complexes. Anal Chem. 2018;90:10707-14.
Nury C, Redeker V, Dautrey S, Romieu A, van der Rest G, Renard P-Y, Melki R, Chamot-Rooke J. A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis. Anal Chem. 2015;87:1853-60.
Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y, Novtisky EJ, Second T, Duan J, Kao A, Guan S, Vellucci D, Rychnovsky SD, Huang L. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol Cell Proteom. 2014;13:3533-43.
Huang R, Zhu W, Wu Y, Chen J, Yu J, Jiang B, Chen H, Chen W. A novel mass spectrometry-cleavable, phosphate-based enrichable and multi-targeting protein cross-linker. Chem Sci. 2019;10:6443-7.
Steigenberger B, Pieters RJ, Heck AJ, Scheltema RA. PhoX: an IMAC-enrichable cross-linking reagent. ACS Cent Sci. 2019;5:1514-22.
Fang Z, Baghdady YZ, Schug KA, Chowdhury SM. Evaluation of Different Stationary Phases in the Separation of Inter-Cross-Linked Peptides. J Proteom Res. 2019;18:1916-25.
فهرسة مساهمة: Keywords: Affinity Purification-Mass Spectrometry; Cross-linking Mass Spectrometry; Post-translational modifications; Prenylations; Protein Interaction Networks
المشرفين على المادة: 0 (Proteins)
94ZLA3W45F (Arginine)
تواريخ الأحداث: Date Created: 20201208 Date Completed: 20210920 Latest Revision: 20210920
رمز التحديث: 20240628
DOI: 10.1002/jssc.202000930
PMID: 33289315
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9314
DOI:10.1002/jssc.202000930