دورية أكاديمية

Assuming independence in spatial latent variable models: Consequences and implications of misspecification.

التفاصيل البيبلوغرافية
العنوان: Assuming independence in spatial latent variable models: Consequences and implications of misspecification.
المؤلفون: Hui FKC; Research School of Finance, Actuarial Studies & Statistics, Australian National University, Acton, Australia., Hill NA; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia., Welsh AH; Research School of Finance, Actuarial Studies & Statistics, Australian National University, Acton, Australia.
المصدر: Biometrics [Biometrics] 2022 Mar; Vol. 78 (1), pp. 85-99. Date of Electronic Publication: 2021 Jan 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Biometric Society Country of Publication: United States NLM ID: 0370625 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1541-0420 (Electronic) Linking ISSN: 0006341X NLM ISO Abbreviation: Biometrics Subsets: MEDLINE
أسماء مطبوعة: Publication: Alexandria Va : Biometric Society
Original Publication: Washington.
مواضيع طبية MeSH: Models, Theoretical*
مستخلص: Multivariate spatial data, where multiple responses are simultaneously recorded across spatially indexed observational units, are routinely collected in a wide variety of disciplines. For example, the Southern Ocean Continuous Plankton Recorder survey collects records of zooplankton communities in the Indian sector of the Southern Ocean, with the aim of identifying and quantifying spatial patterns in biodiversity in response to environmental change. One increasingly popular method for modeling such data is spatial generalized linear latent variable models (GLLVMs), where the correlation across sites is captured by a spatial covariance function in the latent variables. However, little is known about the impact of misspecifying the latent variable correlation structure on inference of various parameters in such models. To address this gap in the literature, we investigate how misspecifying and assuming independence for the latent variables' correlation structure impacts estimation and inference in spatial GLLVMs. Through both theory and numerical studies, we show that performance of maximum likelihood estimation and inference on regression coefficients under misspecification depends on a combination of the response type, the magnitude of true regression coefficient, and the corresponding loadings, and, most importantly, whether the corresponding covariate is (also) spatially correlated. On the other hand, estimation and inference of truly nonzero loadings and prediction of latent variables is consistently not robust to misspecification of the latent variable correlation structure.
(© 2020 The International Biometric Society.)
References: Bjork, J.R., Hui, F. K.C., O'Hara, R.B. and Montoya, J.M. (2018) Uncovering the drivers of host-associated microbiota with joint species distribution modeling. Molecular Ecology, 27, 2714-2724.
Hirose, K. and Konishi, S. (2012) Variable selection via the weighted group LASSO for factoranalysis models. Canadian Journal of Statistics, 40, 345-361.
Hoeting, J.A., Davis, R.A., Merton, A.A. and Thompson, S.E. (2006) Model selection for geostatistical models. Ecological Applications, 16, 87-98.
Hosie, G. (2020) Southern Ocean Continuous Plankton Recorder Zooplankton Records, Version 8. Australian Antarctic Data Centre.
Huang, J., Horowitz, J.L. and Ma, S. (2008) Asymptotic properties of bridge estimators in sparse high-dimensional regression models. The Annals of Statistics, 36, 587-613.
Hui, F.K.C., Mueller, S. and Welsh, A.H. (2020) Random effects misspecification can have severe consequences for random effects inference in linear mixed models. International Statistical Review, https://doi.org/10.1111/insr.12378.
Hui, F.K.C., Tanaka, E. and Warton, D.I. (2018) Order selection and sparsity in latent variable models via the ordered factor LASSO. Biometrics, 74, 1311-1319.
Irincheeva, I., Cantoni, E. and Genton, M.G. (2012) Generalized linear latent variable models with flexible distribution of latent variables. Scandinavian Journal of Statistics, 39, 663-680.
Kristensen, K., Nielsen, A., Berg, C., Skaug, H. and Bell, B. (2015) TMB: automatic differentiation and laplace approximation. Journal of Statistical Software, 70, 1-21.
Kurisu, D. (2019) On nonparametric inference for spatial regression models under domain expanding and infill asymptotics. Statistics & Probability Letters, 154, 108543.
Lindgren, F. and Rue, H. (2015) Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63, 1-25.
Litiére, S., Alonso, A. and Molenberghs, G. (2007) Type I and type II error under random-effects misspecification in generalized linear mixed models. Biometrics, 63, 1038-1044.
Lopes, H.F., Gamerman, D. and Salazar, E. (2011) Generalized spatial dynamic factor models. Computational Statistics & Data Analysis, 55, 1319-1330.
Lu, Z. and Tjostheim, D. (2014) Nonparametric estimation of probability density functions for irregularly observed spatial data. Journal of the American Statistical Association, 109, 1546-1564.
Ma, Y. and Genton, M.G. (2010) Explicit estimating equations for semiparametric generalized linear latent variable models. Journal of the Royal Statistical Society Series B, 72, 475-495.
Mardia, K.V. and Marshall, R.J. (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71, 135-146.
Niku, J., Brooks, W., Herliansyah, R., Hui, F. K.C., Taskinen, S. and Warton, D.I. (2019) Efficient estimation of generalized linear latent variable models. PloS One, 14, e0216129.
Ovaskainen, O., Roy, D.B., Fox, R. and Anderson, B.J. (2016) Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 7, 428-436.
Shirota, S., Gelfand, A.E. and Banerjee, S. (2019) Spatial joint species distribution modeling using Dirichlet processes. Statistica Sinica, 29, 1127-1154.
Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models. Boca Raton, FL: CRC Press.
Thorson, J.T., Scheuerell, M.D., Shelton, A.O., See, K.E., Skaug, H.J. and Kristensen, K. (2015) Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Methods in Ecology and Evolution, 6, 627-637.
Verbeke, G. and Lesaffre, E. (1997) The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics & Data Analysis, 23, 541-556.
Wang, H. and Zhu, J. (2009) Variable selection in spatial regression via penalized least squares. Canadian Journal of Statistics, 37, 607-624.
Warton, D.I., Blanchet, F.G., O'Hara, R., Ovaskainen, O., Taskinen, S., Walker, S.C. et al. (2016) Extending joint models in community ecology: a response to Beissinger et al. Trends in Ecology & Evolution, 31, 737-738.
White, H. (1982) Maximum likelihood estimation of misspecified models. Econometrica, 50, 1-26.
Xu, L., Wang, Y.-G., Zheng, S. and Shi, N.-Z. (2015) Model selection with misspecified spatial covariance structure. Journal of Statistical Computation and Simulation, 85, 2276-2294.
Yoon, H.-J. and Welsh, A.H. (2020) On the effect of ignoring correlation in the covariates when fitting linear mixed models. Journal of Statistical Planning and Inference, 204, 18-34.
Zhu, J., Eickhoff, J. and Yan, P. (2005) Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics, 61, 674-683.
فهرسة مساهمة: Keywords: community ecology; factor analysis; loadings; multivariate abundance data; spatial; spatiotemporal
تواريخ الأحداث: Date Created: 20201219 Date Completed: 20220405 Latest Revision: 20220606
رمز التحديث: 20240829
DOI: 10.1111/biom.13416
PMID: 33340108
قاعدة البيانات: MEDLINE
الوصف
تدمد:1541-0420
DOI:10.1111/biom.13416