دورية أكاديمية

Direct effects influence larval salamander size and density more than indirect effects.

التفاصيل البيبلوغرافية
العنوان: Direct effects influence larval salamander size and density more than indirect effects.
المؤلفون: Anderson TL; Division of Biological Sciences, University of Missouri, Columbia, MO, USA. thander@siue.edu.; Department of Biology, Southern Illinois University Edwardsville, Box 1651, Edwardsville, IL, 62026, USA. thander@siue.edu., Ousterhout BH; Division of Biological Sciences, University of Missouri, Columbia, MO, USA., Rowland FE; Division of Biological Sciences, University of Missouri, Columbia, MO, USA.; School of the Environment, Yale University, New Haven, CT, USA., Drake DL; Division of Biological Sciences, University of Missouri, Columbia, MO, USA.; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA., Burkhart JJ; Division of Biological Sciences, University of Missouri, Columbia, MO, USA., Peterman WE; Division of Biological Sciences, University of Missouri, Columbia, MO, USA.; School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA.
المصدر: Oecologia [Oecologia] 2021 Jan; Vol. 195 (1), pp. 173-186. Date of Electronic Publication: 2021 Jan 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 0150372 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1939 (Electronic) Linking ISSN: 00298549 NLM ISO Abbreviation: Oecologia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York, Springer.
مواضيع طبية MeSH: Ambystoma* , Urodela*, Animals ; Larva ; Missouri ; Population Density
مستخلص: Direct and indirect effects both influence population and community dynamics. The relative strengths of these pathways are often compared using experimental approaches, but their evaluation in situ has been less frequent. We examined how individual and aggregate impacts of direct and indirect effects of species densities, proxies for competition and predation pressure, and habitat variables influenced patterns of larval density and body size of ringed (Ambystoma annulatum) and spotted salamanders (A. maculatum). We surveyed > 150 ponds in Missouri, USA, from 2012 to 2014 to measure the density and body size of each focal species, the density of co-occurring pond food web members, and select habitat features. We used structural equation modeling to quantify the relative importance of direct and indirect pathways on both body size and larval density. Overall, both responses were explained through a combination of direct and indirect effects. However, the magnitudes of direct effects were often greater than indirect effects. Some of the direct and indirect relationships with larval salamander size and density were also consistent with results from experimental studies. Finally, total direct and indirect effects were often weaker due to habitat and density variables negating each other's impacts. Overall, our study shows that direct effects were equivalent to, or more important than, indirect effects. We also demonstrate that the effects stemming from individual relationships can sum to produce net patterns that are negligible in magnitude. Further work on direct and indirect effects with observational data are needed to examine their magnitudes in natural communities.
References: Abrams PA (1995) Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities. Am Nat 146:112–134. (PMID: 10.1086/285789)
Agrawal AA et al (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152. (PMID: 10.1890/1540-9295(2007)5[145:FKGIPA]2.0.CO;2)
Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1303797110. (PMID: 2363026310.1073/pnas.1303797110)
Anderson TL, Semlitsch RD (2016) Top predators and habitat complexity alter an intraguild predation module in pond communities. J Anim Ecol 85:548–558. https://doi.org/10.1111/1365-2656.12462. (PMID: 2647609510.1111/1365-2656.12462)
Anderson TL, Ousterhout BH, Drake DL, Peterman WE, Semlitsch RD (2015) Life history differences influence the impacts of drought on two pond-breeding salamanders Ecol. Appl. 25:1896–1910.
Anderson TL, Linares C, Dodson K, Semlitsch RD (2016a) Variability in functional response curves among larval salamanders: comparisons across species and size classes. Can J Zool 94:23–30. https://doi.org/10.1139/cjz-2015-0149. (PMID: 10.1139/cjz-2015-0149)
Anderson TL et al (2016b) Differences in larval allometry among three ambystomatid salamanders. J Herpetol 50:464–470. (PMID: 10.1670/15-178)
Anderson TL, Mott CL, Hartman BA, Whiteman HH (2017) Biotic and abiotic predictors of larval salamander size and abundance. Copeia 105:237–248. https://doi.org/10.1643/ce-16-515. (PMID: 10.1643/ce-16-515)
Blaustein L, Friedman J, Fahima T (1996) Larval Salamandra drive temporary pool community dynamics: evidence from an artificial pool experiment. Oikos 76:392–402. (PMID: 10.2307/3546211)
Blaustein AR, Walls SC, Bancroft BA, Lawler JJ, Searle CL, Gervasi SS (2010) Direct and indirect effects of climate change on amphibian populations. Divers Distrib 2:281–313. https://doi.org/10.3390/d2020281. (PMID: 10.3390/d2020281)
Brooks RT (2009) Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Clim Change 95:469–483. https://doi.org/10.1007/s10584-008-9531-9. (PMID: 10.1007/s10584-008-9531-9)
Bukovinszky T, van Veen FF, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319:804–807. (PMID: 1825891310.1126/science.1148310)
Cariveau D, Irwin RE, Brody AK, Garcia-Mayeya LS, Von Der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15–26. (PMID: 10.1111/j.0030-1299.2004.12641.x)
Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley books, Santa Cruz.
Dormann CF et al (2018) Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecol Biogeogr 27:1004–1016. https://doi.org/10.1111/geb.12759. (PMID: 10.1111/geb.12759)
Drake DL, Anderson TL, Smith LM, Lohraff KL, Semlitsch RD (2014) Predation of eggs and hatchlings of Ringed Salamanders (Ambystoma annulatum) by native and non-native predators. Herpetologica 70:378–387. (PMID: 10.1655/HERPETOLOGICA-D-14-00017)
Grace JB, Anderson TM, Olff H, Scheiner SM (2010) On the specification of structural equation models for ecological systems. Ecol Monogr 80:67–87. https://doi.org/10.1890/09-0464.1. (PMID: 10.1890/09-0464.1)
Hayes AF, Scharkow M (2013) The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: does method really matter? Psychol Sci 24:1918–1927. (PMID: 2395535610.1177/0956797613480187)
Holomuzki JR, Collins JP, Brunkow PE (1994) Trophic control of fishless ponds by tiger salamander larvae. Oikos 71:55–64. (PMID: 10.2307/3546172)
Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229. (PMID: 92945710.1016/0040-5809(77)90042-9)
Huang C, Sih A (1990) Experimental studies on behaviorally mediated, indirect interactions through a shared predator. Ecology 71:1515–1522. (PMID: 10.2307/1938288)
Huang C, Sih A (1991) Experimental studies on direct and indirect interactions in a three trophic-level stream system. Oecologia 85:530–536. (PMID: 2831250010.1007/BF00323765)
Kimbro DL, Grabowski JH, Hughes AR, Piehler MF, White JW (2017) Nonconsumptive effects of a predator weaken then rebound over time. Ecology 98:656–667. https://doi.org/10.1002/ecy.1702. (PMID: 2798730310.1002/ecy.1702)
Kratina P, Greig HS, Thompson PL, Carvalho-Pereira TS, Shurin JB (2012) Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93:1421–1430. (PMID: 2283438210.1890/11-1595.1)
Lannoo MJ (2005) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley. (PMID: 10.1525/9780520929432)
Lensing JR, Wise DH (2006) Predicted climate change alters the indirect effect of predators on an ecosystem process. Proc Natl Acad Sci USA 103:15502–15505. (PMID: 1702353810.1073/pnas.0607064103)
Lumley T (2004) Analysis of complex survey samples. J Stat Softw 9:1–19. (PMID: 10.18637/jss.v009.i08)
Marino JA Jr et al (2019) Evaluating consumptive and nonconsumptive predator effects on prey density using field time-series data. Ecology 100:e02583. https://doi.org/10.1002/ecy.2583. (PMID: 3056522310.1002/ecy.2583)
Matteson KC, Grace JB, Minor ES (2013) Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape. Oikos 122:682–694. https://doi.org/10.1111/j.1600-0706.2012.20229.x. (PMID: 10.1111/j.1600-0706.2012.20229.x)
Menéndez R et al (2007) Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology 88:605–611. (PMID: 1750358810.1890/06-0539)
Morin PJ (1981) Predatory salamanders reverse the outcome of competition among three species of anuran tadpoles. Science 212:1284–1286. (PMID: 1773883710.1126/science.212.4500.1284)
Mott CL, Sparling DW (2010) Seasonal trends in aggression among sympatric larval salamanders: the roles of habitat-mediation and behavioural conservatism. Behaviour 147:1327–1353. https://doi.org/10.1163/000579510x520998. (PMID: 10.1163/000579510x520998)
Nyström P, Åbjörnsson K (2000) Effects of fish chemical cues on the interactions between tadpoles and crayfish. Oikos 88:181–190. (PMID: 10.1034/j.1600-0706.2000.880120.x)
Oberski D (2014) lavaan. survey: an R package for complex survey analysis of structural equation models. J Stat Softw 57:1–27. (PMID: 10.18637/jss.v057.i01)
Ogilvie JE et al (2017) Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecol Lett 20:1507–1515. https://doi.org/10.1111/ele.12854. (PMID: 2912486310.1111/ele.12854)
Orrock JL, Preisser EL, Grabowski JH, Trussell GC (2013) The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology 94:573–579. https://doi.org/10.1890/12-0502.1. (PMID: 2368788310.1890/12-0502.1)
Ousterhout BH, Semlitsch RD (2016) Non-additive response of larval ringed salamanders to intraspecific density. Oecologia 180:1137–1145. https://doi.org/10.1007/s00442-015-3516-y. (PMID: 2668383410.1007/s00442-015-3516-y)
Ousterhout BH, Anderson TL, Drake DL, Peterman WE, Semlitsch RD (2015) Habitat traits and species interactions differentially affect abundance and body size in pond-breeding amphibians. J Anim Ecol 84:914–924. https://doi.org/10.1111/1365-2656.12344. (PMID: 2564360510.1111/1365-2656.12344)
Peacor SD, Werner EE (1997) Trait-mediated indirect interactions in a simple aquatic food web. Ecology 78:1146–1156. (PMID: 10.1890/0012-9658(1997)078[1146:TMIIIA]2.0.CO;2)
Peterman WE, Anderson TL, Drake DL, Ousterhout BH, Semlitsch RD (2014) Maximizing pond biodiversity across the landscape: a case study of larval ambystomatid salamanders. Anim Conserv 17:275–285. https://doi.org/10.1111/acv.12090. (PMID: 10.1111/acv.12090)
R Core Team (2020) R: A Language and Environment for Statistical Computing, 4.0 edn. R Foundation for Statistical Computing, Vienna, Austria.
Relyea RA (2001) Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540. (PMID: 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2)
Relyea RA, Yurewicz KL (2002) Predicting community outcomes from pairwise interactions: integrating density-and trait-mediated effects. Oecologia 131:569–579. (PMID: 2854755210.1007/s00442-002-0910-z)
Rosseel Y (2012) Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw 48:1–36. (PMID: 10.18637/jss.v048.i02)
Sargeant BL, Gaiser EE, Trexler JC (2011) Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades. Freshwat Biol 56:2334–2346. (PMID: 10.1111/j.1365-2427.2011.02663.x)
Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshwat. Biol. 54:572–586. https://doi.org/10.1111/j.1365-2427.2008.02134.x. (PMID: 10.1111/j.1365-2427.2008.02134.x)
Schmitz OJ (1998) Direct and indirect effects of predation and predation risk in old-field interaction webs. Am Nat 151:327–342. (PMID: 1881132410.1086/286122)
Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163. (PMID: 10.1111/j.1461-0248.2003.00560.x)
Scott DE (1990) Effects of larval density in Ambystoma opacum: an experiment in large-scale field enclosures. Ecology 71:296–306. (PMID: 10.2307/1940269)
Scott DE (1994) The effect of larval density on adult demographic traits in Ambystoma opacum. Ecology 75:1383–1396. (PMID: 10.2307/1937462)
Semlitsch R (1987) Interactions between fish and salamander larvae: costs of predator avoidance or competition? Oecologia 72:481–486. (PMID: 2831250810.1007/BF00378972)
Semlitsch RD, Anderson TL (2016) Structure and dynamics of Spotted Salamander (Ambystoma maculatum) populations in Missouri. Herpetologica 72:81–89. (PMID: 10.1655/HERPETOLOGICA-D-15-00049)
Semlitsch RD, Caldwell JP (1982) Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki. Ecology 63:905–911. (PMID: 10.2307/1937230)
Semlitsch RD, Wilbur HM (1988) Effects of pond drying time on metamorphosis and survival in the salamander Ambystoma talpoideum. Copeia, pp 978–983.
Semlitsch RD, Scott DE, Pechmann JH (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69:184–192. (PMID: 10.2307/1943173)
Semlitsch R, Scott D, Pechmann J, Gibbons J (1996) Structure and dynamics of an amphibian community: evidence from a 16-year study of a natural pond. In: Cody ML, Smallwood JA (eds) Long-term studies of vertebrate communities. Academic Press, San Diego, pp 217–248. (PMID: 10.1016/B978-012178075-3/50010-6)
Semlitsch RD, Anderson TL, Osbourn MS, Ousterhout BH (2014) Structure and dynamics of ringed salamander (Ambystoma annulatum) populations in Missouri. Herpetologica 70:14–22. (PMID: 10.1655/HERPETOLOGICA-D-13-00074)
Semlitsch RD, Peterman WE, Anderson TL, Drake DL, Ousterhout BH (2015) Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians. PLoS ONE 10:e0123055. https://doi.org/10.1371/journal.pone.0123055. (PMID: 25906355440807510.1371/journal.pone.0123055)
Shulse CD, Semlitsch RD, Trauth KM, Williams AD (2010) Influences of design and landscape placement parameters on amphibian abundance in constructed wetlands. Wetlands 30:915–928. https://doi.org/10.1007/s13157-010-0069-z. (PMID: 10.1007/s13157-010-0069-z)
Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210. (PMID: 2123246010.1016/0169-5347(91)90023-Q)
Stretz P, Anderson TL, Burkhart JJ (2019) Macroinvertebrate foraging on larval ambystoma maculatum across ontogeny. Copeia 107:244–249. (PMID: 10.1643/CH-18-140)
Trussell GC, Ewanchuk PJ, Matassa CM (2006) Habitat effects on the relative importance of trait- and density-mediated indirect interactions. Ecol Lett 9:1245–1252. https://doi.org/10.1111/j.1461-0248.2006.00981.x. (PMID: 1704032710.1111/j.1461-0248.2006.00981.x)
Van Buskirk J (2005) Local and landscape influence on amphibian occurrence and abundance. Ecology 86:1936–1947. (PMID: 10.1890/04-1237)
Van Buskirk J (2009) Natural variation in morphology of larval amphibians: phenotypic plasticity in nature? Ecol Monogr 79:681–705. (PMID: 10.1890/08-1692.1)
Van Buskirk J (2011) Amphibian phenotypic variation along a gradient in canopy cover: species differences and plasticity. Oikos 120:906–914. https://doi.org/10.1111/j.1600-0706.2010.18845.x. (PMID: 10.1111/j.1600-0706.2010.18845.x)
Van Buskirk J, Schmidt BR (2000) Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology 81:3009–3028. (PMID: 10.2307/177397)
Van Buskirk J, Yurewicz KL (1998) Effects of predators on prey growth rate: relative contributions of thinning and reduced activity. Oikos 82:20–28. (PMID: 10.2307/3546913)
Walls SC (1996) Differences in foraging behaviour explain interspecific growth inhibition in competing salamanders. Anim Behav 52:1157–1162. (PMID: 10.1006/anbe.1996.0262)
Warner SC, Travis J, Dunson WA (1993) Effect of pH variation of interspecific competition between two species of hylid tadpoles. Ecology 74(1):183–194. (PMID: 10.2307/1939513)
Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101. (PMID: 10.1111/j.2041-210X.2011.00127.x)
Wellborn GA, Skelly DK, Werner EE (1996) Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst 27:337–363. (PMID: 10.1146/annurev.ecolsys.27.1.337)
Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100. (PMID: 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2)
Werner EE, Relyea RA, Yurewicz KL, Skelly DK, Davis CJ (2009) Comparative landscape dynamics of two anuran species: climate-driven interaction of local and regional processes. Ecol Monogr 79:503–521. (PMID: 10.1890/08-1047.1)
Wilbur HM (1972) Competition, predation, and the structure of the Ambystoma-Rana sylvatica community. Ecology 53:3–21. (PMID: 10.2307/1935707)
Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78:2279–2302. (PMID: 10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2)
Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314. (PMID: 1773309710.1126/science.182.4119.1305)
Wootton JT (1993) Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. Am Nat 141:71–89. (PMID: 10.1086/285461)
Wootton JT (1994a) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466. (PMID: 10.1146/annurev.es.25.110194.002303)
Wootton JT (1994b) Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151–165. (PMID: 10.2307/1939391)
Wootton JT (1994c) Putting the pieces together: testing the independence of interactions among organisms. Ecology 75:1544–1551. https://doi.org/10.2307/1939615. (PMID: 10.2307/1939615)
Wootton JT (2002) Indirect effects in complex ecosystems: recent progress and future challenges. J Sea Res 48:157–172. (PMID: 10.1016/S1385-1101(02)00149-1)
فهرسة مساهمة: Keywords: Competition; Interaction chain; Mediation; Pond; Predation; Structural equation modeling
تواريخ الأحداث: Date Created: 20210102 Date Completed: 20210216 Latest Revision: 20210216
رمز التحديث: 20231215
DOI: 10.1007/s00442-020-04820-8
PMID: 33387008
قاعدة البيانات: MEDLINE